跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝佩坊
研究生(外文):Pei-Fang Hsieh
論文名稱:調節胸腺基質淋巴生成素與第一型核呼吸因子以改善腎間質細胞纖維化之機轉探討
論文名稱(外文):Elucidation of the therapeutic role of shTSLP and NRF-1 in renal cellular fibrosis
指導教授:薛佑玲楊堉麟楊堉麟引用關係
指導教授(外文):Yow-Ling ShiueYu-Lin Yang
學位類別:博士
校院名稱:國立中山大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:108
中文關鍵詞:核呼吸因子靜默載體腎纖維化胸腺基質淋巴生成素靜默載體胸腺基質淋巴生成素第一型乙型轉型生長因子第一型核呼吸因子粒線體生合成
外文關鍵詞:thymic stromal lymphopoietin(TSLP)mitochondrial biogenesisnuclear respiratory factor short hairpin RNArenal fibrosisnuclear respiratory factor-1(NRF-1)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腎臟纖維化特徵為腎臟結構和功能發生變化,受損腎臟細胞仍能行使部分原有功能,同時纖維化為組織病理指標與引起臨床疾病原因,最終導致細胞功能障礙,引發末期腎臟疾病或器官衰竭,其治療方式僅血液透析、腹膜透析和腎臟移植,所費不貲,造成社會與經濟成本沉重負擔。因此尋找減緩、阻止、甚至逆轉組織纖維化發生進展方法,使受損細胞向正常細胞逆轉而恢復原來功能,對腎病康復和腎衰竭逆轉具有非常重要意義。腎損傷或發炎會使腎結構被細胞外基質蛋白不正常堆積,造成腎細胞氧化壓力與第一型乙型轉型生長因子(Transforming growth factor beta, TGF-β1)增加,造成腎臟細胞發炎與粒線體生合成失去平衡等,而近來關注發炎因子胸腺基質淋巴生成素(Thymic stromal lymphopoietin, TSLP)然,沒有文獻指出TSLP所誘導發炎反應與纖維化有關。而調節粒線體功能關鍵轉錄因子第一型核呼吸因子(Nuclear respiratory factor 1, NRF-1),能活化粒線體相關基因啟動因子,進一步調控粒線體DNA複製與轉錄。為釐清發炎因子、粒線體生合成與纖維化相關性,本論文將探討TSLP與NRF-1於腎臟纖維母細胞 (NRK-49F)纖維化中角色。
文獻指出細胞激素與生長因子失衡參與腎纖維化病理機制,本論文首度發現TSLP刺激腎臟纖維母細胞造成纖維化指標纖維蛋白增加,運用TGF-β1刺激腎細胞纖維化同時也發現細胞內外TSLP隨著TGF-β1劑量增加而上升,而加入外源性TSLP(1, 10, 100 ng/mL)劑量刺激下,不僅誘導纖維蛋白增加,也刺激TGF-β1下游Smads路徑活化。為證明TSLP於纖維化角色,運用胸腺基質淋巴生成素靜默載體(TSLP shRNA)探討纖維化抑制可行性,透過TGF-β1誘導腎細胞纖維化過程,運用TSLP shRNA載體讓細胞TSLP表現降低並逆轉細胞內外纖維蛋白,同時逆轉纖維化Smads路徑活化,證實TSLP shRNA載體抗腎纖維化作用機轉;而TGF-β1刺激纖維化過程,不僅發炎因子增加,同時造成氧化壓力(Reactive oxygen species,ROS)增加使粒線體生合成降低造成粒轉錄因子NRF-1減少,當抑制氧化壓力能調控粒線體轉錄因子NRF-1,足以證明腎纖維化過程中NRF-1表現顯著不足,並且透過轉殖表現載體pcDNA-NRF-1(2g/mL)顯著逆轉腎細胞纖維化的發生(p<0.01,中華民國專利I527589),也能逆轉TGF-β1刺激下游Smads路徑活化與上皮間質轉換的路徑。為了反向證實,細胞轉殖NRF-1靜默載體shRNA-NRF-1(2g/mL)可顯著增加腎細胞纖維化,證明NRF-1具有正向調節腎纖維化角色。
透過以上結果,瞭解發炎因子TSLP與粒線體生合成因子NRF-1於腎纖維化過程所扮演重要角色,透過shRNA與pcDNA轉殖技術,深入探討發炎因子與轉錄因子的角色,本論文首度證實TSLP shRNA抗腎纖維化作用機轉,並且轉殖pcDNA-NRF-1可顯著逆轉腎細胞纖維化的發生,透過調控TGF-β1下游Smads路徑與EMT路徑,本篇研究將提供出腎纖維化控制全新治療策略為腎纖維化病變與創新治療思維上做出具體的貢獻。
One of the important features of ESRD is renal interstitial fibrosis. Fibrosis is an indication and cause of numerous severe diseases, which will eventually result in cellular dysfunction and organ failure. Although there is an alteration in the structure, the remaining renal cells could still perform a partial function. Hence, it is imperative to develop an effective approach to attenuate or even reverse the progression of renal interstitial fibrosis. Injury or inflammation in the kidney will initiate a cellular and molecular cascade that leads to fibrosis, and it is well-known that elevation of TGF-β1 is implicated in fibrogenesis. The upregulation of TGF-β1 will cause the excessive deposition of extracellular matrix, increased inflammation, and oxidative stress as well as dysfunction of mitochondrial biogenesis. Recently, TSLP has gained increasing attention as it is tightly associated with inflammatory diseases. However, there is still a lack of evidence that shows TSLP-induced inflammation is related to renal fibrosis. On the other hand, NRF-1 has been found to be a key transcription factor to activate several genes that regulate the DNA replication and transcription in mitochondria, thereby modulating the mitochondria biogenesis and function. In order to elucidate the connection between inflammation factor, mitochondria biogenesis and renal fibrosis, we sought to investigate the effects of TSLP and NRF-1 on the transdifferentiation of NRK-49F.
The current study showed that treatment of NRK-49F with TSLP increased the expression of fibronectin and activation of Smads. Moreover, we observed an elevation of TSLP when using TGF-β stimulation to induce the transdifferentiation of NRK-49F. Additionally, we showed that utilization of TSLP shRNA was able to reduce the extra- and intracellular expression of fibronectin and the activation of Smads, suggesting that the TGF-β-increased TSLP was critical to the upregulation of fibronectin and phosphorylation of Smads. In addition to inflammation, we also found that the reactive oxygen species was increased in response to TGF-β stimulation. Our results showed that the mitochondria biogenesis was downregulated and the expression of NRF-1 was inhibited during fibrogenesis, while these phenomena were all prevented when using the antagonist of ROS. In an effort to investigate the functional role of NRF-1 in fibrosis, we examined the effect of overexpression and inhibition of NRF-1 on NRK-49F activation. First, we utilized the pcDNA-NRF-1 to overexpress NRF-1 and showed that the transdifferentiation of NRK-49F was blocked(Taiwan Patent # I527589). Subsequently, shRNA-NRF-1 was employed to inhibit the expression of NRF-1 and we found an increase in the transdifferentiation of NRK-49F.
Altogether, these results demonstrated that TSLP and NRF-1 both play important roles in renal fibrosis. We shall be able to contribute to the development of proper strategies for clinical usage of renal fibrosis treatment.
目 錄
論文審定書………….……………………………………………............I
誌謝………………………………………………………………...........II
中文摘要…………………………………………………….….......III、IV
英文摘要…………………………………………..…...……………...…..V、VI
第一章 緒論…………………………………………………................1
一、 糖尿病腎病變之盛行率................................................................2
二、 糖尿病腎臟纖維化之致病與機轉................................................2
(一) 第一階段:纖維化形成與進展的可逆階段..........................3
(二) 第二階段:纖維形成階段......................................................4
三、 纖維化與上皮間質轉換相關性....................................................6
四、 纖維化與活性氧化物質相關性....................................................8
五、 TGF-β1在糖尿病腎病變纖維化之角色......................................9
六、 纖維化之TGF-β訊息傳導路徑.................................................10
七、 胸腺基質淋巴生成素(TSLP)簡介 ..........................................11
八、 氧化壓力與粒線體生合成關聯.................................................12
九、 核呼吸因子(Nuclear respiratory factor 1,NRF-1)簡介............14
第二章 研究目的…………...........................……......……….....……16
一、具體目標....................................................................................................17
二、各階段執行目標.......................................................................................18
目標一、探討發炎因子胸腺基質淋巴生成素TSLP...............................19
目標二、探討粒線體生合成和調節粒線體生合成功能的關鍵轉錄因子
NRF1.......................................................................................20
第三章 材料與方法................................................................................21
一、 試劑與材料 ........................................................................22-23
二、 細胞培養 ...................................................................................24
三、 繼代細胞 ...................................................................................24
四、 細胞的保存 ...............................................................................24
五、 細胞計數 ...................................................................................25
六、 細胞冰凍與解凍 .......................................................................25
七、 細胞轉殖試驗 ...........................................................................25
八、 蛋白質電泳及西方墨點法 .......................................................26
九、 蛋白轉漬 ...................................................................................26
十、 西方墨點法 ...............................................................................27
十一、 酵素連結免疫吸附分析 ...........................................................27
十二、 免疫螢光分析法.........................................................................28
十三、 粒線體生合成測定.....................................................................28
十四、 氧化壓力測定.............................................................................29
十五、 統計分析 ...................................................................................29
第四章 實驗結果....................................................................................30
一、 TSLP誘導纖維化之生物效應...................................................31
二、 TGF-β1誘導腎纖維母細胞TSLP的表現 ................................31
三、 TSLP對TGF-β1之影響 ............................................................32
四、 TSLP於TGF-β1訊息Smad途徑...............................................32
五、 TSLP靜默載體轉殖腎細胞讓TSLP靜默表現.........................32
六、 TSLP靜默載體(TSLP shRNA)減少TGF-β1誘導纖維蛋白
之表現..........................................................................................33

七、 TSLP靜默載體(TSLP shRNA)調控TGF-β1受器
與Smad傳導路徑........................................................................33
八、 TSLP調控TGF-β1受器訊息誘導Smad傳導路徑.................34
九、 TGF-β1能顯著促進腎臟纖維母細胞纖維蛋白表現...............34
十、 探討纖維化狀態下,是否調控氧化壓力的表現.......................35
十一、 探討纖維化的狀態下,粒線體生合成的表現...........................35
十二、 探討纖維化狀態,粒線體轉錄因子NRF-1表現...................... 35
十三、 TGF-β1刺激纖維化狀況下, 纖維蛋白與NRF-1表現............35
十四、 NRF-1是否透過氧化壓力調控纖維化......................................36
十五、 NRF-1靜默載體(shRNA-NRF1)增加TGF-β1誘導
纖維蛋白表現.............................................................................37
十六、 NRF-1表現載體(pcDNA-NRF1)減少TGF-β1誘導
纖維蛋白之表現........................................................................ 37
十七、 NRF-1表現載體(pcDNA-NRF1)減少TGF-β1受器................37
十八、 NRF-1表現載體(pcDNA-NRF1)減少TGF-β1誘導
Smad訊息之表現.......................................................................38
十九、 NRF-1表現載體(pcDNA-NRF1)減少TGF-β1誘導上皮間質轉換之表現.....................................................................................37
二十、 NRF-1表現載體(pcDNA-NRF1)調控TGF-β1刺激
細胞纖維化.................................................................................38
第五章 討論............................................................................................39
討論一、TSLP於誘導腎纖維母細胞纖維化...............................................40
討論二、NRF-1表現載體(pcDNA-NRF1)減少TGF-β1誘導
纖維化...........................................................................................42
第六章 圖表............................................................................................44
圖一、TSLP誘導腎纖維母細胞纖維化之生物效應........................................45
圖二、TGF-β1誘導TSLP的表現......................................................................46
圖三、TSLP對TGF-β1之影響.........................................................................47
圖四、TSLP於TGF-β1訊息Smad途徑..........................................................48
圖五、運用TSLP靜默載體轉殖細胞中之TSLP靜默表現...............................49
圖六、TSLP靜默載體(TSLP shRNA)減少TGF-β1訊息
誘導纖維蛋白表現.................................................................................50
圖七、TSLP靜默載體(TSLP shRNA)調控TGF-β1受器訊息
誘導Smad傳導路徑 .............................................................................51
圖八、TSLP調控TGF-β1受器訊息誘導Smad傳導路徑.................................52
圖九、TGF-β1顯著促進腎臟纖維母細胞纖維蛋白表現........................53、54
圖十、探討纖維化狀態下,調控氧化壓力的表現.............................................55
圖十一、探討纖維化的狀態下,粒線體生合成的表現.....................................56
圖十二、探討纖維化下粒線體轉錄因子核呼吸因子(NRF-1)的表現............57
圖十三、TGF-β1刺激纖維化時,纖維蛋白與NRF-1表現................................58
圖十四、NRF-1是否透過氧化壓力調控纖維化................................................59
圖十五、NRF-1靜默載體(shRNA-NRF1)增加TGF-β1誘導
纖維蛋白之表現...............................................................................60
圖十六、NRF-1表現載體(pcDNA-NRF1)減少TGF-β1誘導
纖維蛋白之表現..................................................................................61
圖十七、NRF-1表現載體(pcDNA-NRF1)減少TGF-β1誘導
受器之表現.........................................................................................62
圖十八、NRF-1表現載體(pcDNA-NRF1)減少TGF-β1誘導
Smad路徑之表現........................................................................63、64
圖十九、NRF-1表現載體(pcDNA-NRF1)減少TGF-β1誘導上皮間質
轉換之表現.......................................................................................65
圖二十、NRF-1調控TGF-β1刺激細胞纖維化..................................................66
第七章 結論............................................................................................67
一、纖維化狀態下.............................................................................................68
二、運用載體處理下.........................................................................................69
第八章 參考文獻……..………………….........................................70-78
第九章 附錄(以發表兩篇SCI期刊與一篇專利).................................79
參考資料
Alexander Astrakhan MO, Thuc Nguyen, Shirly Becker-Herman, Masanori Iseki, Theingi Aye, Kelly Hudkins, James Dooley, Andrew Farr, Charles E Alpers, Steven F Ziegler & David J Rawlings, 2007. Local increase in thymic stromal lymphopoietin induces systemic alterations in B cell development. Nature Immunology 8, 522 - 531.
Allakhverdi Z CM, Jessup Hk, Yoon Br, Brewer a, Chartier S, Paquette N, Ziegler Sf, Sarfati M, Delespesse G., 2007. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 19;204(2):253-8.
Amin Al-Shami RS, John Kelly, Andrea Keane-Myers and Warren J. Leonard, 2005. A role for TSLP in the development of inflammation in an asthma model. The Journal of Experimental Medicine 202(6): 829–839.
Amruta Manke LW, And Yon Rojanasakul, 2013. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Research International.
Atsushi Kato SFJ, Pedro C. Avila and Robert P. Schleimer, 2007. TLR3- and Th2 Cytokine-Dependent Production of Thymic Stromal Lymphopoietin in Human Airway Epithelial Cells1. The Journal of Immunology vol. 179 no. 2 1080-1087.
Betsy C. Taylor CZ, Amy E. Troy, Yurong Du, Katherine J. Guild, Michael R. Comeau, and David Artis, 2009. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. . The Journal of Experimental Medicine vol. 206 no. 3 655-667
Bhandari ASaV, 2013. Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Physiol. 26;4:384.
Bindu Ramachandran GY, And Tod Gulick, 2008. Nuclear Respiratory Factor 1 Controls Myocyte Enhancer Factor 2A Transcription to Provide a Mechanism for Coordinate Expression of Respiratory Chain Subunits. The Journal of Biological Chemistry, .
Cara M. M. Williams SR, Cedric Hubeau, Hak-Ling Ma, 2006. Mitochondrial Gene Expression: Influence of Nutrients and Hormones. Exp Biol Med.
Chang Joo Oh J-YK, Young-Keun Choi, Han-Jong Kim, Ji-Yun Jeong, Kwi-Hyun Bae, Keun-Gyu Park, in-Kyu Lee, 2012. Dimethylfumarate Attenuates Renal Fibrosis via NF-E2-Related Factor 2-Mediated Inhibition of Transforming Growth Factor-β/Smad Signaling. PLOS ONE 8(9).
Chiang Mc NC, Cheng Yc, Lin Kh, Yen Ch5, Lin Ch., 2016. Rosiglitazone activation of PPARγ-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction and oxidative stress. Neurobiol Aging. 40:181-190.
Cho MH, 2010. Renal fibrosis. The Korean Pediatric Society 53(7): 735–740.
Chun K. Wong SH, Phyllis F. Y. Cheung, and Christopher W. K. Lam, 2010. Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. American Journal of Respiratory Cell and Molecular Biology, Vol. 43, No. 3. 305-315.
Corry D. Bondi NM, Duck Yoon Lee, Karen Block, Yves Gorin, Hanna E. Abboud, and Jeffrey L. Barnes, 2010. NAD(P)H Oxidase Mediates TGF-β1–Induced Activation of Kidney Myofibroblasts. JASN 21(1): 93–102.
Deborah L Clarke1 AMC, Tomas Mustelin2 and Lynne a Murray1*, 2013. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. Fibrogenesis & Tissue Repair 6:20.
Eddy AA, 2011. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl 4(1):2-8.
Eun Kyeong Lee CaJ-aK, Seong Joon Park, Jeung Ki Kim, Kyu Heo,1 Kwang Mo Yang, and Tae Gen Son, 2013. Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells. BMB Rep 46(5): 258–263.
Flaviu Bob GG, 2004. Processes of Fibrogenesis in Glomerular Nephropathies.
Friend Sl HS, Nelson a, Foxworthe D, Williams De, Farr A., 1994. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. . Exp.Hematol. 22:321-328.
Gerald W. Dorn RBV, And Daniel P. Kelly, 2015. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 29(19): 1981–1991.
Guo-Tao Chen LZ, Xiao-Hui Liao, Ru-Yu Yan, Ying Li, Hang Sun, Hui Guo, Qi Liu, 2014. Augmenter of liver regeneration ameliorates renal fibrosis in rats with obstructive nephropathy. Bioscience Reports 34 (5) e00135;.
H. William Schnaper THaa-CP, 2002. It''s a Smad World: Regulation of TGF-β Signaling in the Kidney. J Am Soc Nephrol l 13: 1126–1128.
Hagir B. Suliman TES, Crystal M. Withers, and Claude A. Piantadosi, 2010. Co-regulation of nuclear respiratory factor-1 by NFκB and CREB links LPS-induced inflammation to mitochondrial biogenesis. J Cell Sci. 123(15): 2565–2575.
Hai-Xia Wu P-FG, Li-Ping Jin, Shan-Shan Liang and Da-Jin Li., 2010. Functional regulation of thymic stromal lymphopoietin on proliferation and invasion of trophoblasts in human first-trimester pregnancy. Human Reproduction 25 (5): 1146-1152.
Ishimoto Y IR, 2015. Mitochondria: a therapeutic target in acute kidney injury. Nephrol. Dial. Transplant. 31(7):1062-9.
Jack Lawsona, , Jonathan Elliotta, Caroline Wheeler-Jonesa, Harriet Symeb, Rosanne Jepsonb, 2015. Renal fibrosis in feline chronic kidney disease: Known mediators and mechanisms of injury. The Veterinary Journal Volume 203, Issue 1, 18–26.
Jack Lawsona JE, Caroline Wheeler-Jonesa, Harriet Symeb, Rosanne Jepsonb, 2015. Renal fibrosis in feline chronic kidney disease: Known mediators and mechanisms of injury. The Veterinary Journal Volume 203, Issue 1, 18–26.
Jane Yoo MO, Dora Gyarmati , Baohua Zhou , Theingi Aye , Avery Brewer , Michael R. Comeau , Daniel J. Campbell and Steven F. Ziegler, 2005. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. The Journal of Experimental Medicine vol. 202 no. 4 541-549
Jelena Krstić DT, Slavko Mojsilović, and Juan F. Santibanez 2015. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. Oxid Med Cell Longev.
Jessica Norrbom CJS, Helene Ameln, William E. Kraus, Eva Jansson, and Thomas Gustafsson., 2003. PGC-1 mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 96(1):189-94.
Jessica Trostel GEG, 2015. Endogenous Inhibitors of Kidney Inflammation. Journal of nephrology research 1(2): 61-68.
Joshua A. Smith LJS, Justin B. Collier, Kenneth D. Chavin, and Rick G. Schnellmann, 2015. Suppression of Mitochondrial Biogenesis through Toll-Like Receptor 4–Dependent Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated Kinase Signaling in Endotoxin-Induced Acute Kidney Injury. J Pharmacol Exp Ther. 352:346-357.
Jun Yang JC, Jingyin Yan, Liping Zhang, Gang Chen, Liqun He, Yanlin Wang 2012. Effect of Interleukin 6 Deficiency on Renal Interstitial Fibrosis. PLOS ONE 7(12):e52415.
Kashyap M RY, Spolski R, Samsel L, Leonard Wj., 2011. Thymic stromal lymphopoietin is produced by dendritic cells. J Immunol. 1;187(3):1207-11.
Kati Richter AK, Taina Pihlajaniemi, Ritva Heljasvaara, Thomas Kietzmann 2015. Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biology 344–352.
Keqin Zhang LS, Muhammad Sahidu Rahman, Helmut Unruh, Andrew J. Halayko, Abdelilah Soussi Gounni, 2007. Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. . American Journal of Physiology - Lung Cellular and Molecular Physiology Vol. 293 no. 2, L375-L382.
Kornelia Kis XLaJSH, 2011. Myofibroblast differentiation and survival in fibrotic disease. Expert Reviews in Molecular Medicine Volume 13 / 2011, e27 (24 pages).
Kunwu Yu M, Phd; Pengfei Zhu, Ms; Qian Dong, Md, Phd; Yucheng Zhong, Md, Phd; Zhengfeng Zhu, Md, Phd; Yingzhong Lin, Md, Phd; Ying Huang, Bs; Kai Meng, Md, Phd; Qingwei Ji, Md, Phd; Guiwen Yi, Md, Phd; Wei Zhang, Md, Phd; Bangwei Wu, Ms; Yi Mao, Bs; Peng Cheng, Bs; Xiaoqi Zhao, Md, Phd; Xiaobo Mao, Md, Phd; Qiutang Zeng, Md, Phd, 2013. Thymic Stromal Lymphopoietin Attenuates the Development of Atherosclerosis in ApoE−/− Mice. J Am Heart Assoc.; 2: e000391.
Liu Y, 2004. Epithelial to Mesenchymal Transition in Renal Fibrogenesis: Pathologic Significance, Molecular Mechanism, and Therapeutic Intervention. JASN.
Liu Y, 2006. Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney International 69, 213–217. .
Liu Y, 2011. Cellular and molecular mechanisms of renal fibrosis. Nature Reviews Nephrology volume 7, pages 684–696.
Liu Y-J, 2006. Thymic stromal lymphopoietin: master switch for allergic inflammation. The Journal of Experimental Medicine vol. 203 no. 2 269-273
Macedo Lw CJ, Maravai S, Gonçalves Cl, Oliveira Gm, Kist Lw, Guerra Martinez C, Kurtenbach E, Bogo M, Hipkiss Ar, Streck E, Schuck Pf, Ferreira Gc, 2016. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats. Mol Neurobiol.;53(8):5582-90.
Masayuki Kitajima H-CL, Toshinori Nakayama and Steven F. Ziegler, 2011. TSLP enhances the function of helper type 2 cells. European Journal of Immunology 41: 1862–1871.
Min Hyun Cho MD, 2010. Renal fibrosis. The Korean Pediatric Society 53(7): 735–740.
Mohammad B. Hossain PJ, Ramakrishnan Anish, Raymond H. Jacobson, and Shinako Takada1, 2009. Poly(ADP-ribose) Polymerase 1 Interacts with Nuclear Respiratory Factor 1 (NRF-1) and Plays a Role in NRF-1 Transcriptional Regulation. The Journal of Biological Chemistry, 27;284(13):8621-32.
Na Liu ET, Murugavel Ponnusamy, Haidong Yan and Shougang Zhuang, 2011. Delayed Administration of Suramin Attenuates the Progression of Renal Fibrosis in Obstructive Nephropathy. The American Society for Pharmacology and Experimental Therapeutics 338 no. 3 758-766.
Natalie Gleyzer KV, And Richard C. Scarpulla, 2005. Control of Mitochondrial Transcription Specificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1 and NRF-2) and PGC-1 Family Coactivators. Mol Cell Biol. 25(4):1354-66.
Pandey A OK, Baumann H, Levin Sd, Puel a, Farr Ag, Ziegler Sf, Leonard Wj, Lodish Hf., 2000. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol. Jul;1(1):59-64.
Park Ls MU, Garka K, Gliniak B, Di Santo Jp, Muller W, Largaespada Da, Copeland Ng, Jenkins Na, Farr Ag, Ziegler Sf, Morrissey Pj, Paxton R, Sims Je., 2000. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor. J Exp Med. Sep 4;192(5):659-70.
Rato L DA, Tomás Gd, Santos Ms, Moreira Pi, Socorro S, Cavaco Je3, Alves M, Oliveira Pf., 2014. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim Biophys Acta. 1837(3):335-44.
Regina Jitschin ADH, Heiko Bruns, Andreas Gießl, Juliane Bricks, Jana Berger, Domenica Saul, Michael J. Eckart, Andreas Mackensen and Dimitrios Mougiakakos, 2014. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood 123:2663-2672.
Regina M. Day YJS, Julie M. Lum,Alexander C. White, and Barry L. Fanburg, 2002. Bleomycin upregulates expression of glutamylcysteine synthetase in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 282: L1349–L1357.
Rui Xi Li WHY, And Sydney C. W. Tang, 2015. Role of bone morphogenetic protein-7 in renal fibrosis. Physiol. 6: 114.
Ruochen Che YY, Songming Huang, and Aihua Zhang, 2014. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 306: F367–F378.
Saleh Yazdania RB, Jai Prakash, 2017. Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Advanced Drug Delivery Reviews Volume 121, 1 November 2017, Pages 101-116.
Scarpulla DPKaRC, 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 15;18(4):357-68.
Scarpulla LHaRC, 2001. Mitochondrial DNA Instability and Peri-Implantation Lethality Associated with Targeted Disruption of Nuclear Respiratory Factor 1 in Mice. Mol. Cell. Biol 21(2):644. .
Shailendra . Singh ST, Timothy A. Fields, Sydney Webb, Raymond C. Harris and Reena Rao, 2015. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice. Disease Models & Mechanisms vol. 8 no. 8 931-940.
Shailendra P. Singh ST, Timothy A. Fields, Sydney Webb, Raymond C. Harris and Reena Rao, 2015. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice. Disease Models & Mechanisms vol. 8 no. 8 931-940.
Shen E LY, Li Y, Shan L, Zhu H, Feng Q, Arnold Jm, Peng T 2009. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes 58(10): 2386–2395.
Shumin Mao TCL, Daniel P. Kelly, and Denis M. Medeiros, 2000. Mitochondrial Transcription Factor A Is Increased but Expression of ATP Synthase β Subunit and Medium-Chain Acyl-CoA Dehydrogenase Genes Are Decreased in Hearts of Copper-Deficient Rats. J Nutr 130(9):2143-50.
Soumelis V RP, Kanzler H, Yuan W, Edward G, Homey B, Gilliet M, Ho S, Antonenko S, Lauerma a, Smith K, Gorman D, Zurawski S, Abrams J, Menon S, Mcclanahan T, De Waal-Malefyt Rd R, Bazan F, Kastelein Ra, Liu Yj., 2002. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. Jul;3(7):673-80. .
Sureshbabu A BV, 2013. Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Front Physiol. 26;4:384.
Taylor Bc ZC, Troy Ae, Du Y, Guild Kj, Comeau Mr, Artis D., 2009. TSLP regulates intestinal immunity and inflammation. J Exp Med. 16;206(3):655-67.
Valentina Masola GZ, Maurizio Onisto, Antonio Lupo and Giovanni Gambaro, 2015. Impact of heparanase on renal fibrosis. Journal of Translational Medicine 13:181.
Vassili Soumelis PaR, Holger Kanzler, Wei Yuan, Gina Edward, Bernhart Homey, Michel Gilliet, Steve Ho, Svetlana Antonenko, Annti Lauerma, Kathleen Smith, Daniel Gorman, Sandra Zurawski, Jon Abrams, Satish Menon, Terri Mcclanahan, Rene De Waal-Malefyt, Fernando Bazan, Robert A. Kastelein1 & Yong-Jun Liu, 2002. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nature Immunology 3, 673 - 680
Virbasius Ca VJ, Scarpulla Rc., 1993. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 7(12A):2431-45.
Wayne A. Border NaN, 1998. Interactions of Transforming Growth Factor-p and Angiotensin II in Renal Fibrosis Hypertension. 31:181-188.
Wen-Yan Huang Z-GL, Horea Rus, Xiaoyan Wang, Pedro A. Jose and Shi-You Chen, 2009. RGC-32 Mediates Transforming Growth Factor-β-induced Epithelial-Mesenchymal Transition in Human Renal Proximal Tubular Cells*. The Journal of Biological Chemistry, 284, 9426-9432.
Williams Cm RS, Hubeau C, Ma Hl., 2012. Cytokine Pathways in Allergic Disease. Toxicologic Pathology, 40: 205-215.
Wu J WY, Wo D, Zhang L, Li J., 2016. Nuclear respiratory factor 1 overexpression attenuates anti-benzopyrene‑7,8-diol-9,10-epoxide-induced S-phase arrest of bronchial epithelial cells. Mol Med Rep. 13(5):4372-8.
Xiao-Ming Meng PM-KT, Jun Li, and Hui Yao Lan, 2015. TGF-β/Smad signaling in renal fibrosis. Front Physiol. 6: 82.
Yamaguchi Y, 2014. Periostin in Skin Tissue Skin-Related Diseases. Allergology International Volume 63, Issue 2, 2014, Pages 161-170.
Yiguo Zhang YX, 2016. Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochemical Journal.
Ying Li YS, Fuyou Liu , Lin Sun, Jun Li, Shaobin Duan, Hong Liu, Youming Peng, Li Xiao, Yuping Liu, Yiyun Xi, Yanhua You, Hua Li, Min Wang, Shuai Wang, Tao Hou, 2013. Norcantharidin Inhibits Renal Interstitial Fibrosis by Blocking the Tubular Epithelial-Mesenchymal Transition. PLOS ONE Volume 8 Issue 6 e66356.
Yong Zhu TO, Takashi and, Koji Fujita, Kensuke Koyama, Yuki Nakamura, Ryohei Katoh, Hirotaka Haro and Atsuhito Nakao, 2013. Endogenous TGF-b Activity Limits TSLP Expression in the Intervertebral Disc Tissue by Suppressing NF-kB Activation. . Journal of Orthopaedic Research Volume 31, Issue 7, pages 1144–1149.
Yong-Jun Liu VS, Norihiko Watanabe, Tomoki Ito, Yui-Hsi Wang, Rene De Waal Malefyt, Miyuki Omori, Baohua Zhou, and Steven F. Ziegler, 2006. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annual Review of Immunology Vol. 25: 193-219.
Yunfeng Xia MLE, Yanlin Wang, 2013. Critical Role of CXCL16 in Hypertensive Kidney Injury and Fibrosis. Hypertension. 62(6):1129-37.
Zaza G GS, Masola V, Rugiu C, Fantin F, Gesualdo L, Schena Fp, Lupo A., 2013. Downregulation of nuclear-encoded genes of oxidative metabolism in dialyzed chronic kidney disease patients. PLOS ONE 28;8(10):e77847.
Zeisberg FSaM, 2006. Renal Fibroblasts and Myofibroblasts in Chronic Kidney Disease. JASN vol. 17 no. 11 2992-2998.
Zoulfia Allakhverdi MRC, Heidi K. Jessup , Bo-Rin Park Yoon, Avery Brewer , Suzanne Chartier , Nicole Paquette, Steven F. Ziegler, Marika Sarfati, and Guy Delespesse, 2007. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potentially activates mast cells. The Journal of Experimental Medicine vol. 204 no. 2 253-258
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top