(3.215.77.193) 您好!臺灣時間:2021/04/17 01:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭宇淨
研究生(外文):Yu-Ching Cheng
論文名稱:具旁通二極體之高壓輸出金氧半光伏模組開發
論文名稱(外文):High voltage CMOS photovoltaic module with bypass diodes
指導教授:洪勇智
指導教授(外文):Yung-Jr Hung
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:83
中文關鍵詞:蕭特基二極體旁通二極體高壓光伏模組
外文關鍵詞:Schottky diodebypass diodehigh-voltage PV module
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用半導體金氧半製程實現之矽基光伏元件,其開路電壓值不足以驅動微機電系統,此類應用如靜電致動器通常需要施加10 V以上的高壓搭配低驅動電流以偏轉致動器,因此本論文使用標準0.18 µm CMOS製程搭配MEMS微機電後製程製作高壓串接式光伏元件,並利用整合平台的整合設計,成功設計出開路電壓值高達12.5 V之電壓可調式高壓光伏模組;另外為了降低元件成本,我們首次嘗試使用0.35 µm製程設計高壓元件,並使用不同的整合基板AlN submount,雖電壓值仍達到10.5 V但效果不如以往使用IPD整合0.18 µm製程。
然而在設計高壓串接光伏模組時,另一個需探討的問題為模組輸出電壓與電流受照光均勻程度的影響,由於高壓光伏模組是以數個子光伏元件串聯達成高壓,整體的輸出電流會受限於串聯電路中的最低輸出,進而影響整體光伏元件的表現,因此本論文設計在每幾個子光伏元件電路旁並聯旁通二極體,可將模組中被遮蔽之元件無法流通的光電流進行分流;本論文共設計兩種二極體結構分別為P-N接面二極體與蕭特基二極體。由於作為旁通二極體需要有較低的導通電壓,我們就晶圓廠現有的P-N二極體的原型並提高摻雜量,預期得到較低的二極體開路電壓,然而量測的過程中發現使用此設計的二極體開路電壓為0.516 V對於旁通二極體而言此電壓值過高,可能有跨壓不足無法驅動之疑慮,因此我們設計另一個晶片,使用標準0.18 m CMOS 製程製作積體化光伏元件以及蕭特基二極體 (Schottky diode),結構同樣使用晶圓廠所提供之蕭特基二極體原型,量測所得之開路電壓皆低於0.2 V。未來我們將使用蕭特基二極體作為旁通二極體,並設計至晶片外側,在高斯雷射光源的照射下,可以降低照光強度不均而造成光電流受限的問題,以維持整體光伏模組的光電轉換效率。
The open-circuit voltage of a silicon-based photovoltaic device (PV) is only 0.5V, which is not high enough to drive micro-electro-mechanical system (MEMS) devices. For example, driving an electrostatic actuator typically requires > 10V supply voltage and a low activation current (>1A). In this thesis we developed a 12.5-V high-voltage backside-illuminated CMOS PV mini-module by standard 0.18-m bulk complementary metal-oxide-semiconductor (CMOS) process. Serial connecting on-chip PV cells is achieved by localized substrate removal. To reduce the entire module cost, we also implement 10.5-V high-voltage PV modules using lower-cost 0.35-m bulk CMOS process, but the generated photocurrent is low due to the high electrical resistance of the substrate. Another issue in high-voltage PV module is its optical shading effect. Since the photocurrent generated by the PV cell is limited by the smallest current on any one of the PV cells in series, high-voltage PV module needs uniform illumination intensity profile. This issue is not critical for outdoor PV module using sun light as the energy source, however, the issue becomes series when the incident light is a laser beam with a Gaussian intensity distribution. A solution to this partial-shading issue is to employ bypass diodes in reverse paralleling with the PV cells. In this arrangement the bypass diode is block when all PV cells are illuminated, and conducts when one or several cells are shadowed. Here we employ heavily-doped junction diode to serve as the bypass diode. The initial results show photocurrent enhancement in partial-shaded PV module under laser illumination, but the turn-on voltage is not low enough to be driven by the PV cells. Our next step is to utilize CMOS Schottky diodes as the bypass diodes.
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
內容目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 7
第二章 光伏元件特性以及下線晶片介紹 8
2.1 光伏元件與高壓光伏模組介紹 8
2.1.1 光伏元件介紹 8
2.1.2 高壓光伏模組介紹 9
2.1.3 旁通二極體介紹 10
2.2 光伏元件之電性參數介紹 12
2.2.1 短路電流(Short Circuit Current, ISC) 13
2.2.2 開路電壓(Open Circuit Voltage, VOC) 13
2.2.3 轉換效率(Conversion Efficiency, η) 14
2.2.4 填充因子(Fill Factor, FF) 14
2.3 影響光伏元件特性之因素 16
2.3.1 光伏元件表面反射損失(Reflection loss) 16
2.3.2 載子複合損失(Recombination loss) 16
2.3.3電阻效應(Resistive effect) 16
2.3.4光伏元件之熱效應 18
2.3.5 共地效應(Common ground issues) 20
第三章 下線晶片與製程簡介 21
3.1 實驗儀器介紹 21
3.1.1 覆晶黏著機(Flip-Chip Bonder) 21
3.2 以標準CMOS製程架構設計之光伏元件簡介 24
3.2.1 CMOS製程介紹及限制 24
3.2.2 MEMS後製程介紹與限制 26
3.2.3 整合元件平台之介紹 29
3.3 下線晶片介紹 30
3.3.1 第一代高壓輸出CMOS光伏元件模組 30
3.3.2第二代高壓輸出CMOS光伏元件模組 32
3.3.3第三代高壓輸出CMOS光伏元件模組 36
3.3.4蕭特基二極體元件 40
3.4 高壓光伏模組後製程 42
3.4.1 元件基板研磨製程 42
3.4.2 覆晶封裝製程 44
3.4.3 元件基板去除製程與表面拋光 45
第四章 量測結果分析及討論 48
4.1 量測系統架設 48
4.1.2 平坦化光場架設 49
4.1.3 高斯光場架設 51
4.2 量測結果數據分析 52
4.2.1第一代高壓輸出CMOS光伏元件模組 52
4.2.2 第二代高壓輸出CMOS光伏元件模組 55
4.2.3 第三代高壓輸出CMOS光伏元件模組 58
4.2.4 蕭特基二極體元件設計 62
第五章 結論 64
5.1 成果與討論 64
5.2 未來發展方向 65
參考文獻 66
[1].Fong, Erin G., et al. "Integrated energy-harvesting photodiodes with diffractive storage capacitance." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 3 (2013): 486-497.
[2].Ayazian, Sahar, et al. "A photovoltaic-driven and energy-autonomous CMOS implantable sensor." IEEE Transactions on biomedical circuits and systems 6.4 (2012): 336-343.
[3].Plesz, B., L. Juhasz, and J. Mizsei. "Feasibility study of a CMOS-compatible integrated solar photovoltaic cell array." Design Test Integration and Packaging of MEMS/MOEMS (DTIP), 2010 Symposium on. IEEE, 2010.
[4].Ciftcioglu, Berkehan, et al. "Integrated silicon PIN photodiodes using deep N-well in a standard 0.18-µm CMOS technology." Journal of lightwave technology 27.15 (2009): 3303-3313.
[5].Chou, Fang-Ping, et al. "Silicon photodiodes in standard CMOS technology." IEEE Journal of Selected Topics in Quantum Electronics 17.3 (2011): 730-740.
[6].www.cypress.com
[7].Saheb, Jean-François, et al. "System integration of high voltage electrostatic MEMS actuators." Analog Integrated Circuits and Signal Processing 53.1 (2007): 27-34.
[8].Chen, Wen-Chien, Weileun Fang, and Sheng-Shian Li. "A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits." Journal of Micromechanics and Microengineering 21.6 (2011): 065012.
[9].http://www.electronics-tutorials.ws/diode/bypass-diodes.html
[10].Guilar, Nathaniel J., et al. "Integrated solar energy harvesting and storage." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17.5 (2009): 627-637.
[11].Arima, Yutaka, and Masaya Ehara. "On-chip solar battery structure for CMOS LSI." IEICE electronics express 3.13 (2006): 287-291.
[12].Hung, Yung-Jr, et al. "High-Voltage Backside-Illuminated CMOS Photovoltaic Module for Powering Implantable Temperature Sensors." IEEE Journal of Photovoltaics 8.1 (2018): 342-347.
[13].Prabha, Rajiv Damodaran, and Gabriel A. Rincón-Mora. "Drawing the most power from low-cost single-well 1-mm 2 CMOS photovoltaic cells." IEEE Transactions on Circuits and Systems II: Express Briefs 64.1 (2017): 46-50.
[14].Hung, Yung-Jr, Jia-Fa Chen, and Chung-Lin Chun. "Improved performance in mirror-assisted back-contact CMOS photovoltaic devices." IEEE Electron Device Letters 36.5 (2015): 478-480.
[15].Hung, Yung-Jr, et al. "CMOS-enabled interdigitated back-contact solar cells for biomedical applications." IEEE Transactions on Electron Devices 61.12 (2014): 4019-4024.
[16].Hung, Yung-Jr, Meng-Syuan Cai, and Hsiu-Wei Su. "High-voltage generation in CMOS photovoltaic devices by localized substrate removal." IEEE Electron Device Letters 37.6 (2016): 754-757.
[17].Ahnood, A., et al. "Diamond encapsulated photovoltaics for transdermal power delivery." Biosensors and Bioelectronics 77 (2016): 589-597.
[18].SHIMATANI, Yuichi, et al. "A Fully Implantable Subcutaneous EMG Sensor Powered by Transcutaneous Near-Infrared Light Irradiation." Journal of the Japan Society of Applied Electromagnetics and Mechanics 21.1 (2013): 66-71.
[19].http://imgarcade.com/1/pacemaker-battery/
[20].Ayazian, Sahar, et al. "A photovoltaic-driven and energy-autonomous CMOS implantable sensor." IEEE Transactions on biomedical circuits and systems 6.4 (2012): 336-343.
[21].König, Karsten. "Multiphoton microscopy in life sciences." Journal of microscopy 200.2 (2000): 83-104.
[22].Ahnood, A., et al. "Diamond encapsulated photovoltaics for transdermal power delivery." Biosensors and Bioelectronics 77 (2016): 589-597.
[23].Mori, Isao, Masanori Kubota, and Yoshio Mita. "A test structure of bypass diodes for on-chip high-voltage silicon photovoltaic cell array." Microelectronic Test Structures (ICMTS), 2014 International Conference on. IEEE, 2014.
[24].Zheng, Huiying, and Shuhui Li. "Design of bypass diodes in improving energy extraction of solar PV systems under uneven shading conditions." T&D Conference and Exposition, 2014 IEEE Power and energy society IEEE, 2014.
[25].https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry/Electronic_Properties_of_Materials:_Superconductors_and_Semiconductors
[26].https://pveducation.org/pvcdrom/7-modules-and-arrays/shading
[27].https://kknews.cc/zh-tw/psychology/kxqeopb.html
[28].http://www.jhcsolar.com.tw/jhc/know/index.html?subfun=6
[29].http://www.learnabout-electronics.org/Semiconductors/diodes_22.php
[30].https://pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-series-and-shunt-resistance
[31].A. Morales - Acevedo, “Solar Cells - Research and Application Perspectives,”InTech, 2013.
[32].http://pveducation.org/
[33].http://e.mwrf.net/index.php?m=yp&c=com_index&a=show&modelid=0&catid=493&id=77&userid=330&page=1
[34].Jeng, Ming-Jer, et al. "Heat sink performances of GaN/InGaN flip-chip light-emitting diodes fabricated on silicon and AlN submounts." Microelectronics Reliability 52.5 (2012): 884-888.
[35].Hsiu-Wei Su, "Performance variation of backside-illuminated photovoltaic devices in different foundry CMOS technology nodes. " National Sun Yat-sen University master thesis, 2017
[36].Cheng-Han Lu, "Enabling techniques for enhanced light trapping in CMOS photovoltaic devices. " National Sun Yat-sen University master thesis, 2017
電子全文 電子全文(網際網路公開日期:20230824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔