跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/21 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宗佑
研究生(外文):Zong-Yu Tsai
論文名稱:以紫外光固化纖維強化樹脂作為軟板於有機發光二極體之應用
論文名稱(外文):Applications of Ultraviolet curing fiber reinforced plastic as flexible substrate to organic light emitting diode
指導教授:張美濙
指導教授(外文):Mei-Ying Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:100
中文關鍵詞:軟性基板霧度纖維強化樹脂有機發光二極體
外文關鍵詞:Reinforced PlasticFlexible SubstrateHazeOrganic Light Emitting DiodesFiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗在開發一種新的軟性基板的製程,以紫外光固化纖維強化樹脂作為有機發光二極體的基板,當前的目標是可以做出照明用的元件,纖維的部分是使用無塵紙,而強化樹脂的部分是使用 UV 紫外光硬化膠。實驗主要分為兩個步驟,一是製作新的軟板並測量其各種特性,二是以新軟板製作元件並測量其各種光電特性。
在製作軟板方面,我們以上有 PDMS 的玻璃作為模板,並將滴上 UV 硬化膠的無塵紙以三明治式的方法壓平,並盡可能地讓 UV 膠完全滲透進無塵紙的孔洞以降低其散射度、增加穿透度;而我們製作出來的軟板的穿透度在400 nm ~ 800 nm 可以穿透 84.2% 的光線,散射度上達到在 400 nm ~ 800 nm 被散射了 43.4% 的光線,最重要的是霧度方面達到在 400 nm ~ 800 nm 的霧度為 24.7%,這樣的結果很適合照明使用;且表面粗糙度RMS 值也可以達到 0.74 nm ;在軟板上旋塗 PEDOT:PSS 摻雜 5 % DMSO 藥劑時,可以讓膜厚穩定的約為 101 nm ,且片電阻約為 0.166 kΩ ,得到導電率為 596.4 S/cm ,這樣的電導率雖然不足以作為陽極,但後續藥劑的優化後十分有可能替代 ITO。
在製作元件方面,雖然目前效能還不如 PET 所製作的元件,但在元件結構未完全優化的情況還能達到亮度 1311.14 cd/m2 ,效能較低的原因主要是穿透度未有 PET 來得高,但是卻有 PET 所沒有的霧度 24.7 % ,這才是我們的目標;且此軟板在未來還有更多變的功能,因為其穿透度與霧度是可以隨著製作軟板手法而有所不同的,可以根據應用上的需要而量身製訂製作手法,是一種極具發展性的新興軟板。
This experiment is developing a new flexible substrate process, using UV-curing fiber reinforced plastic as the substrate of the organic light-emitting diode. The current goal is to make components for lighting, and the fiber part is made using dust-free paper. Part of the plastic is a UV-curable adhesive. The experiment is mainly divided into two steps, one is to make a new flexible substrate and measure its various characteristics, and the second is to make components and measure various photoelectric characteristics of the new flexible substrate.
In the production of flexible substrate, we have the glass of PDMS as the template, and the dust-free paper with UV hardening glue is flattened by sandwich method, and the UV glue is completely penetrated into the hole of the dust-free paper as much as possible to reduce it. Scattering, increase penetration; and the flexible substrate we produced can penetrate 84.2% of light from 400 nm to 800 nm, and 43.4% of light is scattered from 400 nm to 800 nm. The most important thing is that the haze reaches 24.7% in the range of 400 nm to 800 nm. This result is very suitable for lighting; and the surface roughness RMS value can also reach 0.74 nm; PEDOT:PSS with 5% DMSO is spin-coated on the flexible substrate,and the film thickness can be stabilized at about 101 nm, and the sheet resistance is about 0.166 kΩ, resulting in a conductivity of 596.4 S/cm. Although the conductivity is not enough as an anode, the subsequent agent After optimization, it is very likely to replace ITO.
In terms of component manufacturing, although the current performance is not as good as that of PET, the brightness can reach 1311.14 cd/m2 when the component structure is not fully optimized. The reason for the lower performance is that the penetration is not high with PET. But there is a haze of 24.7 % that PET does not have. This is our goal; and this flexible substrate will have more functions in the future, because its penetration and haze can be made with the flexible substrate method. Different from each other, the production method can be tailored according to the needs of the application. It is a very developmental emerging flexible substrate.
目錄
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1-1 顯示器歷史發展 1
1-2 有機發光二極體簡介 4
1-3 軟板的趨勢以及發展 6
1-3-1 纖維樹脂軟板 8
1-4 OLED的基本結構介紹 10
1-4-1 雙層A型(Double Layer-A) 10
1-4-2 雙層B型(Double Layer-B) 11
1-4-3 三層A型(Three Layer-A) 12
1-4-4 三層B型(Three Layer-B) 13
1-5 OLED的基礎理論 15
1-5-1 無機發光二極體(LED)與有機發光二極體(OLED)的發光機制差別 15
1-5-2 有機發光二極體的基礎發光原理 17
1-5-3 OLED的能量轉換機制 19
1-5-4 濃度淬熄效應 23
1-5-5有機發光二極體的各層材料介紹 25
1-5-6 OLED放光效率定義 31
1-5-7 有機發光二極體的光色定義 35
1-6 PEDOT:PSS作為電極的導電原理 39
1-6-1氫離子摻雜 40
1-6-2極性作用力 41
第二章 實驗 42
2-1 實驗動機 42
2-2 實驗架構 44
2-3 實驗材料 46
2-4 製程設備 49
2-4-1 超音波清洗機(Ultrasonic cleaning) 49
2-4-2 旋轉塗佈機(Spin coater) 50
2-4-3 加熱盤(Hot plate) 50
2-4-4 紫外光燈(Ultraviolet) 50
2-4-5 氧電漿清洗機(O2 -plasma) 50
2-4-6 手套箱(Glove Box) 51
2-4-7 蒸鍍機(Evaporator) 52
2-5 測量設備 53
2-5-1 表面輪廓儀 53
2-5-2 四點探針(Four-point-probe) 53
2-5-3 紫外光-可見光光譜儀(UV-Visible spectrometer) 54
2-5-4 原子力掃描探針顯微鏡(Atomatic Force Microscopy, AFM) 55
2-5-5 有機電激發光元件光電特性量測系統 57
2-6 實驗步驟 59
2-6-1 PDMS 玻璃膜板製作 59
2-6-2 軟板製作 60
2-6-3 旋轉塗佈上 PEDOT:PSS 62
2-6-4 將紫外光固化纖維強化樹脂軟板和 PET 以超薄銀為陽極蒸鍍元件製程 63
2-6-5 將紫外光固化纖維強化樹脂軟板以 PEDOT:PSS 為陽極蒸鍍元件製程 65
第三章 結果與討論 66
3-1 上述做法的參數比較 66
3-1-1 PDMS 的比例調配 66
3-1-2 UV 紫外線硬化膠的型號比較 66
3-1-3 其它手法的影響 67
3-2 軟板的各項數據分析(以下是用最佳手法做的軟板) 68
3-2-1 厚度 68
3-2-2 表面粗糙度 69
3-2-3 穿透度、散射度及霧度 71
3-2-3-1 無塵紙的數據分析 71
3-2-3-2 UV 膠的數據分析 72
3-2-3-3 軟板的數據分析 73
3-2-4 旋轉塗佈上 PEDOT:PSS 的膜厚、片電阻及電導率 74
3-2-5 軟板小結 75
3-3 以紫外光固化纖維強化樹脂軟板製作元件的光電特性分析 79
第四章 總結 83
參考文獻 85
[1]Tang, C.W.,& VanSlyke, S.A.(1987). Organic electroluminescent diodes. Applied physics letters,51(12),913-915
[2]Tang, C. W. (1986).Two-layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185
[3]Adachi, C., Tokito, S., Tsutsui, T., & Saito, S. (1988). Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics, 27(4A), L713.
[4]Era, M., Adachi, C., Tsutsui, T., & Saito, S. (1991). Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 178(5-6), 488-490.
[5]Kido, J., Kohda, M., Okuyama, K., & Nagai, K. (1992). Organic electroluminescent devices based on molecularly doped polymers. Applied physics letters, 61(7), 761-763.
[6]Kido, J., Kimura, M., & Nagai, K. (1995). Multilayer white light-emitting organic electroluminescent device. Science-new york then washington, 1332-1332.
[7]Kido, J., Shionoya, H., & Nagai, K. (1995). Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly (N‐vinylcarbazole). Applied physics letters, 67(16), 2281-2283.
[8]Kafafi, Z. H. (Ed.). (2005). Organic electroluminescence. Crc press.
[9]Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons.
[10]Tang, C. W., VanSlyke, S. A., & Chen, C. H. (1989). Electroluminescence of doped organic thin films. Journal of applied physics, 65(9), 3610-3616.
[11]陳金鑫, & 黃孝文. (2005). OLED: 有機電激發光材料與元件. 五南圖書出版股份有限公司.
[12]Förster, T. (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 437(1‐2), 55-75.
[13]Dexter, D. L. (1953). A theory of sensitized luminescence in solids. The journal of chemical physics, 21(5), 836-850.
[14]Stolka, M., Yanus, J. F., & Pai, D. M. (1984). Hole transport in solid solutions of a diamine in polycarbonate. The journal of physical chemistry, 88(20), 4707-4714.
[15]S.E.Shaheen, G.E.Jabbour, M.M.Morrell, Y.Kawabe, B.Kippelen, N.Peyghambarian, M.F.Nabor, R.Schlaf, E.A.Mash, N.R.Armstrong, Appl.Phys.Lett., 84, 2324(1998)
[16]T.Mori, H.Fujikawa, S.Tokito, V.Taga, Appl.Phys.Lett.,73,2763(1998)
[17]H.Heil, J.Steiger, S.Karg, M.Gastel, H.Ortner, H.Von Seggern, M.Stobel, J.Appl.Phys., 89, 420(2001)
[18]M.G.Mason, C.W.Tang, L.S.Hung, P.Raychaudhuri, J.Madathil, D.J.Giesen, L.Yan, Q.T.Le, Y.Gao, S.T.Lee, L.S.Liao, L.F.Cheng, W.R.Salaneck, D.A.dos Santos, J.L.Bredas, J.Appl.Phys., 89, 2756(2001)
[19]L.S.Hung, R.Q.Zhang, P.He, G.Mason, J.phys.D:Appl.Phys., 35, 103(2002)
[20]顧鴻壽. (2001). 光電有機電激發光顯示器技術及應用. 新文京開發
[21]Shoustikov, A. A., You, Y., & Thompson, M. E. (1998). Electroluminescence color tuning by dye doping in organic light-emitting diodes. IEEE journal of selected topics in quantum electronics, 4(1), 3-13.
[22]G. Gustafsson, Y. Cao, G.. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature, 357, 477 (1992)
[23]G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, Opt. Lett., 22, 172(1997)
[24]Xu, R. P., Li, Y. Q., & Tang, J. X. (2016). Recent advances in flexible organic light-emitting diodes. Journal of Materials Chemistry C, 4(39), 9116-9142.
[25]林耀文. (2015). 以極性非質子溶劑透過摻雜及熱處理提升 PEDOT: PSS 導電性應用於有機發光二極體之研究. 中山大學光電工程研究所學位論文, 1-94.
[26]Ouyang, J., Xu, Q., Chu, C. W., Yang, Y., Li, G., & Shinar, J. (2004). On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer, 45(25), 8443-8450.
[27]Noh, H. Y., Park, C. S., Park, J. S., Kang, S. W., & Kim, H. R. (2012). Transfer printing method to obtain polarized light emission in organic light-emitting device. Japanese Journal of Applied Physics, 51(6S), 06FJ03.
[28]龔宇睿, & 呂奇明. (2014). 電致變色材料發展趨勢. 工業材料雜誌, 光電特刊, (330), 120-129.
[29]Service, R. F. (2003). Technology. Electronic textiles charge ahead. Science, 301(5635), 909.
[30]Aad, G., Abat, E., Abbott, B., Abdallah, J., Abdelalim, A. A., Abdesselam, A., ... & Abreu, H. (2010). Charged-particle multiplicities in pp interactions at measured with the ATLAS detector at the LHC. Physics letters B, 688(1), 21-42.
[31]Yao, Y., Tao, J., Zou, J., Zhang, B., Li, T., Dai, J., ... & Hitz, E. (2016). Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy & Environmental Science, 9(7), 2278-2285.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top