|
參考文獻 1.Brackett, C.A., Dense Wavelength Division Multiplexing Networks - Principles and Applications. Ieee Journal on Selected Areas in Communications, 1990. 8(6): p. 948-964. 2.WDM. Available from: https://en.wikipedia.org/wiki/Wavelength-division_multiplexing. 3.Tajima, K., All-Optical Switch with Switch-Off Time Unrestricted by Carrier Lifetime. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 1993. 32(12a): p. L1746-L1749. 4.Tanabe, T., et al., Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. Opt Lett, 2005. 30(19): p. 2575-7. 5.Volz, T., et al., Ultrafast all-optical switching by single photons. Nature Photonics, 2012. 6(9): p. 605-609. 6.McKinley, K. and N.J.M.O.P.L.A. Sandier, Tantalum pentoxide for advanced DRAM applications. 1996. 446. 7.Rabiei, P., et al., Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum. Opt Express, 2013. 21(6): p. 6967-72. 8.Sieber, I.V. and P. Schmuki, Porous tantalum oxide prepared by electrochemical anodic oxidation. Journal of the Electrochemical Society, 2005. 152(9): p. C639-C644. 9.Xu, Q., et al., Micrometre-scale silicon electro-optic modulator. Nature, 2005. 435(7040): p. 325-7. 10.Foster, M.A., et al., Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006. 441(7096): p. 960-3. 11.Agrawal, G.P. and N.A. Olsson, Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor-Laser Amplifiers. Ieee Journal of Quantum Electronics, 1989. 25(11): p. 2297-2306. 12.Kippenberg, T.J., R. Holzwarth, and S.A. Diddams, Microresonator-based optical frequency combs. Science, 2011. 332(6029): p. 555-9. 13.Takamoto, M., et al., An optical lattice clock. Nature, 2005. 435(7040): p. 321-4. 14.Diddams, S.A., et al., An optical clock based on a single trapped 199Hg+ ion. Science, 2001. 293(5531): p. 825-8. 15.Steinmetz, T., et al., Laser frequency combs for astronomical observations. Science, 2008. 321(5894): p. 1335-7. 16.Thorpe, M.J., et al., Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 2006. 311(5767): p. 1595-9. 17.Diddams, S.A., L. Hollberg, and V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 2007. 445(7128): p. 627-30. 18.Roelkens, G., et al. Frequency comb generation in III-V-on-silicon photonic integrated circuits. in Integrated Photonics Research, Silicon and Nanophotonics. 2016. Optical Society of America. 19.Born, G.V., Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, 1962. 194(4832): p. 927-9. 20.McCracken, R.A., et al., Broadband phase coherence between an ultrafast laser and an OPO using lock-to-zero CEO stabilization. Optics Express, 2012. 20(15): p. 16269-16274. 21.Li, F., et al., Modeling Frequency Comb Sources. Nanophotonics, 2016. 5(2): p. 292-315. 22.超連續光譜. Available from: https://en.wikipedia.org/wiki/Supercontinuum. 23.Huang, D., et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-81. 24.5G科普. Available from: https://dahetalk.com/2019/03/01/%E3%80%905g%E7%A7%91%E6%99%AE%E3%80%91%E5%8F%AA%E8%A6%819%E5%BC%B5%E5%9C%96%EF%BC%8C%E7%9C%8B%E6%87%82%E4%BB%80%E9%BA%BC%E6%98%AF5g%EF%BD%9C%E5%A4%A7%E5%92%8C%E6%9C%89%E8%A9%B1%E8%AA%AA/. 25.OCT. Available from: http://www.baysteyecare.com/optical-coherence-tomography-oct/. 26.Koos, C., et al., Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt Express, 2007. 15(10): p. 5976-90. 27.Leuthold, J., C. Koos, and W. Freude, Nonlinear silicon photonics. Nature Photonics, 2010. 4(8): p. 535-544. 28.Dinu, M., F. Quochi, and H. Garcia, Third-order nonlinearities in silicon at telecom wavelengths. Applied Physics Letters, 2003. 82(18): p. 2954-2956. 29.Ikeda, K., et al., Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. Opt Express, 2008. 16(17): p. 12987-94. 30.Oh, D.Y., et al., Supercontinuum generation in an on-chip silica waveguide. Opt Lett, 2014. 39(4): p. 1046-8. 31.Tien, M.-C., et al., Ultra-low loss Si 3 N 4 waveguides with low nonlinearity and high power handling capability. 2010. 18(23): p. 23562-23568. 32.Chaneliere, C., et al., Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Materials Science & Engineering R-Reports, 1998. 22(6): p. 269-322. 33.Inoue, H., et al., Low loss GaAs optical waveguides. 1985. 32(12): p. 2662-2668. 34.Lamont, M.R., C.M. de Sterke, and B.J.J.O.e. Eggleton, Dispersion engineering of highly nonlinear As 2 S 3 waveguides for parametric gain and wavelength conversion. 2007. 15(15): p. 9458-9463. 35.Avrutsky, I.A. and V.A. Sychugov, Reflection of a Beam of Finite Size from a Corrugated Waveguide. Journal of Modern Optics, 2007. 36(11): p. 1527-1539. 36.Wang, C.Y., et al., Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. 2013. 4: p. 1345. 37.Asano, I., et al., Development of MIM/Ta2O5capacitor process for 0.10-µm DRAM. Electronics and Communications in Japan (Part II: Electronics), 2004. 87(2): p. 26-36. 38.DRAM記憶體. Available from: http://wccftech.com/nvidia-pascal-architecture-detailed-technical-analysis-stacked-dram-nv-link/. 39.High-κ dielectric. Available from: https://en.wikipedia.org/wiki/High-%CE%BA_dielectric. 40.Muttalib, M.F.A., et al., Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching. Journal of Vacuum Science & Technology A, 2014. 32(4): p. 041304. 41.Zhou, J.C., et al., Effect of sputtering pressure and rapid thermal annealing on optical properties of Ta2O5 thin films. Transactions of Nonferrous Metals Society of China, 2009. 19(2): p. 359-363. 42.Takahashi, H., S. Suzuki, and I.J.J.o.L.T. Nishi, Wavelength multiplexer based on SiO/sub 2/-Ta/sub 2/O/sub 5/arrayed-waveguide grating. 1994. 12(6): p. 989-995. 43.Ahluwalia, B.S., et al., Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles. Ieee Photonics Technology Letters, 2009. 21(19): p. 1408-1410. 44.Wu, C.L., et al., Low-loss and high-Q Ta(2)O(5) based micro-ring resonator with inverse taper structure. Opt Express, 2015. 23(20): p. 26268-75. 45.Liu, C.-Y., Process Improvement For Low Loss and High Quality Ta2O5 Based Micro-ring Resonator. 2018. 46.Hwang, P.-S., Investigation and Realization of Supercontinuum Generation within Ta2O5 Based Nonlinear Waveguide 2018. 47.Eftekhari, G.J.p.s.s., MIS diodes on n‐InP with tantalum oxide interfacial layer grown by rapid thermal oxidation of tantalum. 1994. 146(2): p. 867-871. 48.Al-Jumaily, G.A. and S.M. Edlou, Optical properties of tantalum pentoxide coatings deposited using ion beam processes. Thin Solid Films, 1992. 209(2): p. 223-229. 49.Chu, A., et al., Room-temperature radio frequency sputtered Ta 2 O 5: A new etch mask for bulk silicon dissolved processes. 1999. 17(2): p. 455-459. 50.Yang, W.M., et al., Biomedical response of tantalum oxide films deposited by DC reactive unbalanced magnetron sputtering. Surface & Coatings Technology, 2007. 201(19-20): p. 8062-8065. 51.Ishihara, A., et al., Tantalum (oxy)nitrides prepared using reactive sputtering for new nonplatinum cathodes of polymer electrolyte fuel cell. Electrochimica Acta, 2008. 53(16): p. 5442-5450. 52.Ngaruiya, J.M., et al., Preparation and characterization of tantalum oxide films produced by reactive DC magnetron sputtering. Physica Status Solidi a-Applications and Materials Science, 2003. 198(1): p. 99-110. 53.Seki, S., T. Unagami, and B.J.J.o.T.E.S. Tsujiyama, Electrical Characteristics of the RF Magnetron‐Sputtered Tantalum Pentoxide‐Silicon Interface. 1984. 131(11): p. 2621-2625. 54.Park, J., et al., Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source. Journal of Applied Physics, 2001. 89(1): p. 15-19. 55.Hutchinson, I.H.J.P.P. and C. Fusion, Principles of plasma diagnostics. 2002. 44(12): p. 2603. 56.Birdsall, C.K., Plasma Physics via Computer Simulation. 2004: CRC press. 57.Herrmann Jr, W.J.J.o.V.S. and Technology, E‐beam deposition characteristics of reactively evaporated Ta2O5 for optical interference coatings. 1981. 18(3): p. 1303-1305. 58.Toki, K., et al., Deposition of SiO2 and Ta2O5 films by electron-beam-excited plasma ion plating. Thin Solid Films, 1996. 281: p. 401-403. 59.Mikhelashvili, V. and G.J.A.p.l. Eisenstein, Electrical characteristics of Ta 2 O 5 thin films deposited by electron beam gun evaporation. 1999. 75(18): p. 2836-2838. 60.Chen, B.-T., Novel Nonlinear Waveguide Material Tantalum Pentoxide & MicroRing Fabrication. 2014. 61.中山大學光電工程研究所學位論文, 陳.J., 新型非線性波導材料 Ta2O5 與微環之研製. 2014: p. 1-115. 62.布拉格定律(Bragg Law)示意圖. Available from: https://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover. 63.Blanquart, T., et al., High-performance imido–amido precursor for the atomic layer deposition of Ta2O5. 2012. 27(7): p. 074003. 64.Joseph, C., P. Bourson, and M.D. Fontana, Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy. Journal of Raman Spectroscopy, 2012. 43(8): p. 1146-1150. 65.Temple, P.A. and C.E. Hathaway, Multiphonon Raman-Spectrum of Silicon. Physical Review B, 1973. 7(8): p. 3685-3697. 66.Lee, K., et al., Comparison of plasma chemistries for dry etching of Ta 2 O 5. 2000. 18(4): p. 1169-1172. 67.Jonsson, L.B., et al., Patterning of tantalum pentoxide, a high epsilon material, by inductively coupled plasma etching. Journal of Vacuum Science & Technology B, 2000. 18(4): p. 1906-1910. 68.Fehrembach, A.-L., et al., High Q Polarization Independent Guided-Mode Resonance Filter With “Doubly Periodic” Etched Ta $ _2 $ O $ _5 $ Bidimensional Grating. 2010. 28(14): p. 2037-2044. 69.Levy, J., Integrated nonlinear optics in silicon nitride waveguides and resonators. 2011. 70.Ay, F. and A. Aydinli, Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Optical Materials, 2004. 26(1): p. 33-46. 71.Belt, M., et al., Ultra-low-loss Ta_2O_5-core/SiO_2-clad planar waveguides on Si substrates. Optica, 2017. 4(5): p. 532-536. 72.Saleh, B.E. and M.C. Teich, Fundamentals of photonics. 2019: John Wiley & Sons. 73.Singh, S.P. and N. Singh, Nonlinear effects in optical fibers: Origin, management and applications. Progress in Electromagnetics Research-Pier, 2007. 73: p. 249-275. 74.Wu, C.-L., et al., Four-wave-mixing in the loss low submicrometer Ta 2 O 5 channel waveguide. 2015. 40(19): p. 4528-4531. 75.Aso, O., M. Tadakuma, and S.J.d. Namiki, Four-wave mixing in optical fibers and its applications. 1999. 1: p. 2. 76.Wu, C.-L., et al., Efficient wavelength conversion with low operation power in a Ta 2 O 5-based micro-ring resonator. 2017. 42(23): p. 4804-4807. 77.Lin, Y.Y., et al., Self-phase modulation in highly confined submicron Ta2O5 channel waveguides. Opt Express, 2016. 24(19): p. 21633-41. 78.Tai, C.-Y., et al., Determination of nonlinear refractive index in a Ta 2 O 5 rib waveguide using self-phase modulation. 2004. 12(21): p. 5110-5116. 79.Shimizu, F., Frequency Broadening in Liquids by a Short Light Pulse. Physical Review Letters, 1967. 19(19): p. 1097-&. 80.Kean, P.N., K. Smith, and W. Sibbett, Spectral and Temporal Investigation of Self-Phase Modulation and Stimulated Raman-Scattering in a Single-Mode Optical Fiber. Iee Proceedings-J Optoelectronics, 1987. 134(3): p. 163-170. 81.Z-scan. Available from: http://photonicswiki.org/images/4/4c/Selffocus.jpg. 82.Wu, C.L., et al., Tens of GHz Tantalum pentoxide‐based micro‐ring all‐optical modulator for Si photonics. 2017. 529(3): p. 1600358. 83.Belt, M., et al., Ultra-low-loss Ta 2 O 5-core/SiO 2-clad planar waveguides on Si substrates. 2017. 4(5): p. 532-536. 84.Ji, M., et al., Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator. Opt Express, 2015. 23(14): p. 18679-85.
|