跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/10 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏甫諺
研究生(外文):Fu-Yan Yan
論文名稱:利用電子束熱蒸鍍機製備五氧化二鉭薄膜之應用
論文名稱(外文):Development and application of Tantalum Pentoxide (Ta2O5) film synthesized by the E-gun evaporation
指導教授:李晁逵
指導教授(外文):Chao-Kuei Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:98
中文關鍵詞:環形共振腔、非線性波導、五氧化二鉭、穿透譜、全光調變
外文關鍵詞:Ring resonator、Nonlinear waveguide、Tantalum pentoxide(Ta2O5)、Transmission spectrum、All-optical modulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
因為近年光通訊的發展迅速,不僅是在傳輸速度提升與傳輸量增加,同時也 在元件上致力於發出更小的尺寸,進而增加對非線性光學元件的研究。本論文中, 我們首度利用電子束熱蒸鍍機開發成長高品質五氧化二鉭薄膜,並用以製備波導元件進而展現在非線性光學的應用潛力。
在第一部分,在560度氧環境下退火,我們成功成長平整度為0.728 nm的五氧化二鉭薄膜,在薄膜特性分析如XRD與拉曼發射譜都展現出薄膜的五氧化二鉭本徵特性,在折射率部分,量測結果顯示在可見光到紅外光波長範圍的折射率約2.06到2.01,說明我們製作出的五氧化二鉭屬於高折射率材料,且在波長500 nm~1700 nm具有極低的消光係數,代表五氧化二鉭薄膜幾乎不吸收光;第二部分則是使用此薄膜來進行波導製程,再對直線波導進行後退火,可以量測到傳輸損耗平均下降4.575 dB,同時製作環形共振腔,在環形共振腔的品質因子(Q值)為43322,alpha值為0.3cm-1,表示unload Q可以達到300000;第三部分則是使用此環腔元件進行全光調變對於非線性折射率的量測可以計算出n2數值為1.42×10-14cm2/W。
To achieve high bit rate signal processing in the integrated optical system, the ultrafast all optical modulator is regarded as the key element in the modern optical communication system. In this thesis, using electron beam evaporation, high quality Ta2O5 film for nonlinear waveguide is demonstrated. First of all, high quality Ta2O5 film with roughness of around 0.728 nm was grown. The XRD and Raman spectrum all show the nature of Ta2O5 structure. Meanwhile, refractive index from 2.06 to 2.1 and ultralow extinction coefficient all exhibit that electron beam evaporation growth Ta2O5 film is low loss and high refractive index material, leading to potential for waveguide application. Second, using E-beam lithography technique, the Ta2O5 channel waveguide with low propagation loss of around 0.3/cm has been realized. Finally, the all optical modulation in the Ta2O5 micro ring at ~1550 nm has been obtained, further extracting the nonlinear refractive index of Ta2O5 at ~1550 nm. The nonlinear coefficient n2 is therefore obtained with value around 1.42x10-14 cm2/W. The record-high low loss and high optical nonlinearity of the Ta2O5 channel waveguide are expected to be utilized in nonlinear waveguide applications with low demanding optical power.
目錄
論文審定書 ................................ ................................ ................................ ..................... i
英文審定書 ................................ ................................ ................................ .................... ii
致謝 ................................ ................................ ................................ .............................. iii
摘要 ................................ ................................ ................................ ............................... iv
Abstract ................................ ................................ ................................ .......................... v
目錄 ................................ ................................ ................................ ............................... vi
圖次 ................................ ................................ ................................ ............................ viii
表次 ................................ ................................ ................................ .............................. xii
第一章 緒論 1
1.1 非線性波導簡介 1
1.2 製作材料的文獻回顧 5
1.3 五氧化二鉭(Ta2O5)在光電元件上的應用 7
1.4 論文動機 9
1.5 論文架構 12
第二章 電子束蒸鍍機元件製程 13
2.1 各種薄膜成長之比較 13
2.1.2 陽極氧化法(Anodic Oxidation) 14
2.1.3 離子鍍(Ion plating) 14
2.1.4 濺鍍法(Sputtering) 15
2.1.5 真空蒸鍍系統(Vacuum evaporation deposition) 19
2.2 薄膜製程 21
2.2.1 清洗基板: 22
2.2.2 鍍膜: 23
2.3退火機制 25
2.4. 薄膜分析 26
2.4.1 原子力顯微鏡(Atomic force microscope, AFM) 26
2.4.2 X射線繞射儀(X-ray diffractometer,XRD) 28
2.4.3拉曼光譜(Micro-raman spectrum) 30
2.4.4 橢偏儀 32
2.4.5 小結 34
2.5 元件製程 35
2.5.1 電子束微影 35
1. 設計圖形: 36
2. 旋圖光阻: 37
3. 電子束微影機台操作: 38
2.5.2 蝕刻(Etch): 41
2.5.4 電漿輔助化學氣相沉積(PECVD) 44
2.5.5 切割 45
2.5.6 拋光研磨(Polish) 46
2.6 元件後退火及量測 47
2.7 章節結論 49
第三章 波導光學量測 50
3.1 環形共振腔模態分析 50
3.2 品質因子分析 59
3.3章節結論 63
第四章 E-gun成長波導之非線性檢測 64
4.1波導非線性檢測技術 64
4.1.1 四波混頻[74] 64
4.1.2 自相位調變[77] 67
4.1.3 Z掃描技術 69
4.1.4 全光調變 70
4.2全光調變的系統架設和元件介紹 72
4.3 全光調變的調變訊號結果分析 74
4.4章節結論 76
第五章 結論與未來展望 77
參考文獻 79


圖次
圖1-1 5G關鍵技術、4G與5G比較圖[24] 2
圖1-2 分波多工器(WDM) [2] 2
圖1-3 全光開關(All optical switch) [5] 2
圖1-4 光學時鐘[15] 3
圖1-5 左圖天文量測[15]、右圖氣體探測器[16] 3
圖1-6 鎖模雷射產生光梳[12] 3
圖1-7 左圖為環形共振腔產生頻率光梳[21] 3
圖1-8 超連續光譜[22] 4
圖1-9 光相干涉儀器示意圖[25] 4
圖1-10 五氧化二鉭鍵結示意圖 7
圖1-11 五氧化二鉭在介電層的應用[37] 7
圖1-12 左圖DRAM記憶體[38]、右圖場效電晶體示意圖[39] 8
圖1-13 左圖五氧化二鉭光波導[40]、右圖為五氧化二鉭陣列式波導光柵[42] 8
圖1-14 左圖感應器波導導光層[41]、右圖波導傳導微粒子[43] 8
圖1-15 U形環狀共振腔[44] 10
圖1-16 有無反向式錐形波導結構設計[44] 10
圖1-17五氧化二鉭環形共振腔實現四波混頻[45] 11
圖1-18 五氧化二鉭直線波導實現超連續光譜[46] 11
圖2-1選擇氧化法製作五氧化二鉭環形共振腔[7] 13
圖2-2 左圖為Gas Breakdown文獻圖[54]、右圖為電漿現象[55] 15
圖2-3直流濺鍍系統 16
圖2-4射頻濺鍍機 17
圖2-5磁控式濺鍍機 18
圖2-6 電子束產生示意圖 19
圖2-7 E-gun工作示意圖 20
圖2-8 石英振盪片 20
圖2-9薄膜清洗流程示意圖 22
圖2-10 (a)腔體外觀、(b)控制台、(c)腔體內部 24
圖2-11 (a)輔助沉積離子束位置、(b)坩鍋及電子束出口、(c)冷凍幫浦 24
圖2-12 (a)載台放置方式、(b)以銅片夾住式片、(c)鍍完後式片的00樣子 24
圖2-13 退火爐內部構造、右圖退火爐外觀 25
圖2-14左圖為退火前AFM圖、右圖為650鍍退火後AFM圖 26
圖2-15左圖為退火前3D AFM圖、右圖為650度退火後3D AFM圖 26
圖2-16左圖為退火前AFM圖、右圖為會火後AFM圖 27
圖2-18左圖為學長以前所量測之數據圖[61]、右圖為此次薄膜數據圖 28
圖2-19 量測使用之XRD機台(Bede D1 HR-XRD) 29
圖2-20布拉格定律(Bragg Law)示意圖[62] 29
圖2-21不同建結方式的五氧化二鉭多面體[63] 30
圖2-22 五氧化二鉭折射率曲線圖 32
圖2-23五氧化二鉭消光係數圖 32
圖2-24橢偏儀實體圖 33
圖2-25 實驗流程表 36
圖2-26 (a)正負光阻圖解、(b)旋轉塗佈光阻、(c)烘烤光阻 37
圖2-27 左圖E-Beam機台外觀、右圖機台操作介面 39
圖2-28 機台內部示意圖 39
圖2-29 波導圖形組合示意圖 40
圖2-30 E-Beam 完整寫入圖 40
圖2-31 Reflow 示意圖 40
圖2-32蝕刻後元件側面示意圖 41
圖2-33 SEM拍攝波導位置示意圖 42
圖2-34直線波導正上方SEM圖 42
圖2-35 環形共振腔的正上方SEM圖 42
圖2-36 環形共振腔的Tilt角SEM圖 43
圖2-37感應式耦合電漿蝕刻機實體圖 43
圖2-38 (a)PECVD機台外觀圖、(b)工作原理示意圖 44
圖2-39 (a)切割機台外觀圖、(b)切割示意圖 45
圖2-40 (a)研磨機、(b)研磨紙、(c)研磨載具 46
圖2-41量測實驗架設圖 48
圖2-42量測結果數據圖 48
圖3-1 (a)環腔元件示意圖、(b)為光纖實際耦進波導圖 50
圖3-2 元件耦光架設示意圖 50
圖3-3 環形共振腔示意圖 51
圖3-4 穿透譜參數示意圖 52
圖3-5 穿透譜訊雜比 54
圖3-6量測PC旋轉180度的光譜圖 55
圖3-7經由歸一化處理後的光譜圖 55
圖3-8波長對應ng的光譜圖 56
圖3-9左圖為蝕刻後SEM圖、右圖為剖面圖 57
圖3-10經過模擬後計算出的ng曲線 57
圖3-11 Lumerical模擬環形共振腔光場圖 58
圖3-12元件分區示意圖 59
圖3-13全部數據的穿透譜分析圖 59
圖3-14以Q值最大的點作圖 60
圖3-15長方體波導光能量截面圖 61
圖3-16脊狀直線波導光能量截面圖 61
圖3-17 Q值趨勢圖(加入Gap 600) 61
圖3-18左圖為TE對應最大Q值、右圖為TM對應最大Q值 62
圖4-1簡併態四波混頻[76] 65
圖4-2非簡併態四波混頻[76] 66
圖4-3四波混頻系統架設圖[74] 66
圖4-4光譜式意圖[74] 66
圖4-6實驗結果圖[77] 68
圖4-7 Z掃描架設式意圖[81] 69
圖4-8微環共振腔內克爾效應產生全光開關示意圖[82] 71
圖4-9調變振幅的變化示意圖[82] 71
圖4-10穿透率的變化示意圖[82] 71
圖4-11系統架設圖 72
圖4-12調變示意圖 73
圖4-15實驗數據圖 74
圖4-16實驗數據數值化 75
圖4-17穿透譜位移模擬圖 75
圖5-1 薄型五氧化二鉭波導[83] 78
圖5-2 利用覆蓋二維材料提高非線性折射率[84] 78

表次
表1-1 非線性波導製程材料整理 6
表2-1蒸鍍機與濺鍍機比較表 21
表2-2五氧化二鉭拉曼光譜模態分析 30
表2-3 五氧化二鉭特徵波峰位置[64] 31
表2-4 PECVD沉積參數設定表 44
表3-1分析後對應的模態數據表 57
參考文獻
1.Brackett, C.A., Dense Wavelength Division Multiplexing Networks - Principles and Applications. Ieee Journal on Selected Areas in Communications, 1990. 8(6): p. 948-964.
2.WDM. Available from: https://en.wikipedia.org/wiki/Wavelength-division_multiplexing.
3.Tajima, K., All-Optical Switch with Switch-Off Time Unrestricted by Carrier Lifetime. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 1993. 32(12a): p. L1746-L1749.
4.Tanabe, T., et al., Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. Opt Lett, 2005. 30(19): p. 2575-7.
5.Volz, T., et al., Ultrafast all-optical switching by single photons. Nature Photonics, 2012. 6(9): p. 605-609.
6.McKinley, K. and N.J.M.O.P.L.A. Sandier, Tantalum pentoxide for advanced DRAM applications. 1996. 446.
7.Rabiei, P., et al., Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum. Opt Express, 2013. 21(6): p. 6967-72.
8.Sieber, I.V. and P. Schmuki, Porous tantalum oxide prepared by electrochemical anodic oxidation. Journal of the Electrochemical Society, 2005. 152(9): p. C639-C644.
9.Xu, Q., et al., Micrometre-scale silicon electro-optic modulator. Nature, 2005. 435(7040): p. 325-7.
10.Foster, M.A., et al., Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006. 441(7096): p. 960-3.
11.Agrawal, G.P. and N.A. Olsson, Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor-Laser Amplifiers. Ieee Journal of Quantum Electronics, 1989. 25(11): p. 2297-2306.
12.Kippenberg, T.J., R. Holzwarth, and S.A. Diddams, Microresonator-based optical frequency combs. Science, 2011. 332(6029): p. 555-9.
13.Takamoto, M., et al., An optical lattice clock. Nature, 2005. 435(7040): p. 321-4.
14.Diddams, S.A., et al., An optical clock based on a single trapped 199Hg+ ion. Science, 2001. 293(5531): p. 825-8.
15.Steinmetz, T., et al., Laser frequency combs for astronomical observations. Science, 2008. 321(5894): p. 1335-7.
16.Thorpe, M.J., et al., Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science, 2006. 311(5767): p. 1595-9.
17.Diddams, S.A., L. Hollberg, and V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 2007. 445(7128): p. 627-30.
18.Roelkens, G., et al. Frequency comb generation in III-V-on-silicon photonic integrated circuits. in Integrated Photonics Research, Silicon and Nanophotonics. 2016. Optical Society of America.
19.Born, G.V., Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature, 1962. 194(4832): p. 927-9.
20.McCracken, R.A., et al., Broadband phase coherence between an ultrafast laser and an OPO using lock-to-zero CEO stabilization. Optics Express, 2012. 20(15): p. 16269-16274.
21.Li, F., et al., Modeling Frequency Comb Sources. Nanophotonics, 2016. 5(2): p. 292-315.
22.超連續光譜. Available from: https://en.wikipedia.org/wiki/Supercontinuum.
23.Huang, D., et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-81.
24.5G科普. Available from: https://dahetalk.com/2019/03/01/%E3%80%905g%E7%A7%91%E6%99%AE%E3%80%91%E5%8F%AA%E8%A6%819%E5%BC%B5%E5%9C%96%EF%BC%8C%E7%9C%8B%E6%87%82%E4%BB%80%E9%BA%BC%E6%98%AF5g%EF%BD%9C%E5%A4%A7%E5%92%8C%E6%9C%89%E8%A9%B1%E8%AA%AA/.
25.OCT. Available from: http://www.baysteyecare.com/optical-coherence-tomography-oct/.
26.Koos, C., et al., Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt Express, 2007. 15(10): p. 5976-90.
27.Leuthold, J., C. Koos, and W. Freude, Nonlinear silicon photonics. Nature Photonics, 2010. 4(8): p. 535-544.
28.Dinu, M., F. Quochi, and H. Garcia, Third-order nonlinearities in silicon at telecom wavelengths. Applied Physics Letters, 2003. 82(18): p. 2954-2956.
29.Ikeda, K., et al., Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides. Opt Express, 2008. 16(17): p. 12987-94.
30.Oh, D.Y., et al., Supercontinuum generation in an on-chip silica waveguide. Opt Lett, 2014. 39(4): p. 1046-8.
31.Tien, M.-C., et al., Ultra-low loss Si 3 N 4 waveguides with low nonlinearity and high power handling capability. 2010. 18(23): p. 23562-23568.
32.Chaneliere, C., et al., Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Materials Science & Engineering R-Reports, 1998. 22(6): p. 269-322.
33.Inoue, H., et al., Low loss GaAs optical waveguides. 1985. 32(12): p. 2662-2668.
34.Lamont, M.R., C.M. de Sterke, and B.J.J.O.e. Eggleton, Dispersion engineering of highly nonlinear As 2 S 3 waveguides for parametric gain and wavelength conversion. 2007. 15(15): p. 9458-9463.
35.Avrutsky, I.A. and V.A. Sychugov, Reflection of a Beam of Finite Size from a Corrugated Waveguide. Journal of Modern Optics, 2007. 36(11): p. 1527-1539.
36.Wang, C.Y., et al., Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. 2013. 4: p. 1345.
37.Asano, I., et al., Development of MIM/Ta2O5capacitor process for 0.10-µm DRAM. Electronics and Communications in Japan (Part II: Electronics), 2004. 87(2): p. 26-36.
38.DRAM記憶體. Available from: http://wccftech.com/nvidia-pascal-architecture-detailed-technical-analysis-stacked-dram-nv-link/.
39.High-κ dielectric. Available from: https://en.wikipedia.org/wiki/High-%CE%BA_dielectric.
40.Muttalib, M.F.A., et al., Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching. Journal of Vacuum Science & Technology A, 2014. 32(4): p. 041304.
41.Zhou, J.C., et al., Effect of sputtering pressure and rapid thermal annealing on optical properties of Ta2O5 thin films. Transactions of Nonferrous Metals Society of China, 2009. 19(2): p. 359-363.
42.Takahashi, H., S. Suzuki, and I.J.J.o.L.T. Nishi, Wavelength multiplexer based on SiO/sub 2/-Ta/sub 2/O/sub 5/arrayed-waveguide grating. 1994. 12(6): p. 989-995.
43.Ahluwalia, B.S., et al., Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles. Ieee Photonics Technology Letters, 2009. 21(19): p. 1408-1410.
44.Wu, C.L., et al., Low-loss and high-Q Ta(2)O(5) based micro-ring resonator with inverse taper structure. Opt Express, 2015. 23(20): p. 26268-75.
45.Liu, C.-Y., Process Improvement For Low Loss and High Quality Ta2O5 Based Micro-ring Resonator. 2018.
46.Hwang, P.-S., Investigation and Realization of Supercontinuum Generation within Ta2O5 Based Nonlinear Waveguide
2018.
47.Eftekhari, G.J.p.s.s., MIS diodes on n‐InP with tantalum oxide interfacial layer grown by rapid thermal oxidation of tantalum. 1994. 146(2): p. 867-871.
48.Al-Jumaily, G.A. and S.M. Edlou, Optical properties of tantalum pentoxide coatings deposited using ion beam processes. Thin Solid Films, 1992. 209(2): p. 223-229.
49.Chu, A., et al., Room-temperature radio frequency sputtered Ta 2 O 5: A new etch mask for bulk silicon dissolved processes. 1999. 17(2): p. 455-459.
50.Yang, W.M., et al., Biomedical response of tantalum oxide films deposited by DC reactive unbalanced magnetron sputtering. Surface & Coatings Technology, 2007. 201(19-20): p. 8062-8065.
51.Ishihara, A., et al., Tantalum (oxy)nitrides prepared using reactive sputtering for new nonplatinum cathodes of polymer electrolyte fuel cell. Electrochimica Acta, 2008. 53(16): p. 5442-5450.
52.Ngaruiya, J.M., et al., Preparation and characterization of tantalum oxide films produced by reactive DC magnetron sputtering. Physica Status Solidi a-Applications and Materials Science, 2003. 198(1): p. 99-110.
53.Seki, S., T. Unagami, and B.J.J.o.T.E.S. Tsujiyama, Electrical Characteristics of the RF Magnetron‐Sputtered Tantalum Pentoxide‐Silicon Interface. 1984. 131(11): p. 2621-2625.
54.Park, J., et al., Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source. Journal of Applied Physics, 2001. 89(1): p. 15-19.
55.Hutchinson, I.H.J.P.P. and C. Fusion, Principles of plasma diagnostics. 2002. 44(12): p. 2603.
56.Birdsall, C.K., Plasma Physics via Computer Simulation. 2004: CRC press.
57.Herrmann Jr, W.J.J.o.V.S. and Technology, E‐beam deposition characteristics of reactively evaporated Ta2O5 for optical interference coatings. 1981. 18(3): p. 1303-1305.
58.Toki, K., et al., Deposition of SiO2 and Ta2O5 films by electron-beam-excited plasma ion plating. Thin Solid Films, 1996. 281: p. 401-403.
59.Mikhelashvili, V. and G.J.A.p.l. Eisenstein, Electrical characteristics of Ta 2 O 5 thin films deposited by electron beam gun evaporation. 1999. 75(18): p. 2836-2838.
60.Chen, B.-T., Novel Nonlinear Waveguide Material Tantalum Pentoxide & MicroRing Fabrication. 2014.
61.中山大學光電工程研究所學位論文, 陳.J., 新型非線性波導材料 Ta2O5 與微環之研製. 2014: p. 1-115.
62.布拉格定律(Bragg Law)示意圖. Available from: https://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover.
63.Blanquart, T., et al., High-performance imido–amido precursor for the atomic layer deposition of Ta2O5. 2012. 27(7): p. 074003.
64.Joseph, C., P. Bourson, and M.D. Fontana, Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy. Journal of Raman Spectroscopy, 2012. 43(8): p. 1146-1150.
65.Temple, P.A. and C.E. Hathaway, Multiphonon Raman-Spectrum of Silicon. Physical Review B, 1973. 7(8): p. 3685-3697.
66.Lee, K., et al., Comparison of plasma chemistries for dry etching of Ta 2 O 5. 2000. 18(4): p. 1169-1172.
67.Jonsson, L.B., et al., Patterning of tantalum pentoxide, a high epsilon material, by inductively coupled plasma etching. Journal of Vacuum Science & Technology B, 2000. 18(4): p. 1906-1910.
68.Fehrembach, A.-L., et al., High Q Polarization Independent Guided-Mode Resonance Filter With “Doubly Periodic” Etched Ta $ _2 $ O $ _5 $ Bidimensional Grating. 2010. 28(14): p. 2037-2044.
69.Levy, J., Integrated nonlinear optics in silicon nitride waveguides and resonators. 2011.
70.Ay, F. and A. Aydinli, Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Optical Materials, 2004. 26(1): p. 33-46.
71.Belt, M., et al., Ultra-low-loss Ta_2O_5-core/SiO_2-clad planar waveguides on Si substrates. Optica, 2017. 4(5): p. 532-536.
72.Saleh, B.E. and M.C. Teich, Fundamentals of photonics. 2019: John Wiley & Sons.
73.Singh, S.P. and N. Singh, Nonlinear effects in optical fibers: Origin, management and applications. Progress in Electromagnetics Research-Pier, 2007. 73: p. 249-275.
74.Wu, C.-L., et al., Four-wave-mixing in the loss low submicrometer Ta 2 O 5 channel waveguide. 2015. 40(19): p. 4528-4531.
75.Aso, O., M. Tadakuma, and S.J.d. Namiki, Four-wave mixing in optical fibers and its applications. 1999. 1: p. 2.
76.Wu, C.-L., et al., Efficient wavelength conversion with low operation power in a Ta 2 O 5-based micro-ring resonator. 2017. 42(23): p. 4804-4807.
77.Lin, Y.Y., et al., Self-phase modulation in highly confined submicron Ta2O5 channel waveguides. Opt Express, 2016. 24(19): p. 21633-41.
78.Tai, C.-Y., et al., Determination of nonlinear refractive index in a Ta 2 O 5 rib waveguide using self-phase modulation. 2004. 12(21): p. 5110-5116.
79.Shimizu, F., Frequency Broadening in Liquids by a Short Light Pulse. Physical Review Letters, 1967. 19(19): p. 1097-&.
80.Kean, P.N., K. Smith, and W. Sibbett, Spectral and Temporal Investigation of Self-Phase Modulation and Stimulated Raman-Scattering in a Single-Mode Optical Fiber. Iee Proceedings-J Optoelectronics, 1987. 134(3): p. 163-170.
81.Z-scan. Available from: http://photonicswiki.org/images/4/4c/Selffocus.jpg.
82.Wu, C.L., et al., Tens of GHz Tantalum pentoxide‐based micro‐ring all‐optical modulator for Si photonics. 2017. 529(3): p. 1600358.
83.Belt, M., et al., Ultra-low-loss Ta 2 O 5-core/SiO 2-clad planar waveguides on Si substrates. 2017. 4(5): p. 532-536.
84.Ji, M., et al., Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator. Opt Express, 2015. 23(14): p. 18679-85.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top