(3.237.20.246) 您好!臺灣時間:2021/04/15 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林泓邦
研究生(外文):Hong-Bang Lin
論文名稱:應變量和拉伸溫度對多相中錳鋼拉伸性質及顯微組織的影響
論文名稱(外文):Effect of strain and temperature on tensile properties and microstructure of a multi-phase medium Mn steel
指導教授:張志溥
指導教授(外文):Chang Chih-Pu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:185
中文關鍵詞:變韌鐵顯微組織應變誘發相變化拉伸溫度中錳鋼拉伸性質
外文關鍵詞:bainitemicrostructurestrain-induced phasetest temperaturemedium manganese steeltensile properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究不同應變量和拉伸溫度對中錳鋼拉伸性質與顯微組織的影響。在室溫至275 oC之間,以25oC為間隔,使用應變速率為10-2/s做拉伸實驗,以探討不同溫度對拉伸性質及顯微組織的關係。
實驗發現,在室溫拉伸時,得到最佳抗拉強度、0.2%降伏強度與伸長量,且從顯微組織觀察亦能發現大量的應變誘發麻田散鐵生成。而拉伸溫度175 oC和275oC時,由於較少的應變誘發相變化,導致較差的伸長率。顯微組織觀察中發現,在拉伸溫度25oC至100oC時,可觀察到應變誘發麻田散鐵,然而當拉伸溫度越高,觀察到的應變誘發麻田散鐵數量越少;在拉伸溫度125oC至275oC時,觀察到應變誘發變韌鐵發生,且在拉伸溫度125oC時,只有在應變量高達60%之頸縮區域出現少數應變誘發麻田散鐵。在高於室溫的拉伸溫度觀察發現,當越靠近破斷面,即面積縮減率越高的位置,其相變化程度也隨之開始增加。實驗結果證實拉伸性質與材料之應變誘發相變化有密切之關係。
This thesis studies the effect of deformation temperature and plastic strain on the tensile properties and microstructure of a medium manganese steel. The strain rate used was 10-2/s, and the testing temperatures were between room temperature and 275 oC. It was found that highest tensile strength, 0.2% yield strength and elongation were obtained at 25 oC, and a largest amount of strain induced martensite was found at room temperature. At 175 and 275 oC, lowest elongation was obtained, which is due to the lack of strain-induced phase transformation. From SEM microstructural observation, it was found that, between 25oC to 100oC, strain-induced martensite occurred, and the higher the testing temperature, the less amount of strain-induced martensite formed. At 125°C, only a small number of strain-induced martensite was found at regions having area reduction up to 60%, and strain-induced bainite began to be formed. At testing temperatures between 150°C and 275°C, only strain-induced bainite was found. The strength and tensile elongation were found depended on the degree of strain-induced phase transformation.
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 xii
一、前言 1
二、文獻回顧 2
2-1 麻田散鐵 2
2-1-1 應力與應變誘發麻田散鐵 2
2-1-2 相變化所需化學與機械驅動力 3
2-1-3 麻田散鐵形貌 3
2-1-4 變形誘發麻田散鐵成核與成長 4
2-2 Transformation Induced Plasticity (TRIP)鋼 5
2-2-1 TRIP鋼的沃斯田鐵穩定性 5
2-2-2合金成份對TRIP鋼機械性質的影響 6
2-2-3 溫度對TRIP鋼機械性質的影響 7
2-3 變韌鐵 9
2-3-1 變韌鐵成核與成長 10
2-3-2 變韌鐵形貌 12
2-3-3 應力對變韌鐵相變化之影響 13
論文審定書 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xiii
一、前言 1
二、文獻回顧 2
2-1 麻田散鐵 2
2-1-1 應力與應變誘發麻田散鐵 2
2-1-2 相變化所需化學與機械驅動力 3
2-1-3 麻田散鐵形貌 3
2-1-4 變形誘發麻田散鐵成核與成長 4
2-2 Transformation Induced Plasticity (TRIP)鋼 5
2-2-1 TRIP鋼的沃斯田鐵穩定性 5
2-2-2合金成份對TRIP鋼機械性質的影響 6
2-2-3 溫度對TRIP鋼機械性質的影響 7
2-3 變韌鐵 9
2-3-1 變韌鐵成核與成長 10
2-3-2 變韌鐵形貌 12
2-3-3 應力對變韌鐵相變化之影響 13
2-3-4 應變對變韌鐵相變化之影響 15
2-4 應變誘發肥粒鐵 16
三、研究目的 18
四、實驗方法 19
4-1實驗材料 19
4-2實驗步驟 19
4-3拉伸試驗 19
4-4顯微組織分析 19
4-5 面積縮減率計算 20
4-6 X-ray繞射分析(X-ray diffraction, XRD) 20
五、實驗結果 22
5-1不同拉伸溫度之機械性質 22
5-2 拉伸前的顯微組織 24
5-3 不同拉伸溫度之變形組織 25
5-4不同拉伸溫度下均勻變形區的顯微組織 29
5-5不同拉伸溫度下相同面積縮減率的顯微組織 30
5-6相同拉伸溫度之不同應變量在均勻變形區之顯微組織 31
5-7相分率分析 31
六、討論 32
6-1 顯微組織的演化 32
6-2 拉伸性質 34
七、結論 37
八、參考文獻 39
[1] T. Baumeister, L.S. Marks, Standard Handbook for Mechanical Engineers, 1967.
[2] A.Q. Khan, The effect of morphology on the strength of copper-based martensites, 1972.
[3] D. Fahr, Metallurgical and Materials Transactions B 2 (1971) 1883-1892.
[4] P. Maxwell, A. Goldberg, J. Shyne, Metallurgical and Materials Transactions B 5 (1974) 1305-1318.
[5] I. Tamura, Metal Science 16 (1982) 245-253.
[6] T. Maki, Microstructure and mechanical behaviour of ferrous martensite, Materials Science Forum, vol 56, Trans Tech Publ, 1990, pp. 157-168.
[7] H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Materialia 54 (2006) 1279-1288.
[8] A. Shibata, S. Morito, T. Furuhara, T. Maki, Acta Materialia 57 (2009) 483-492.
[9] G. Krauss, A. Marder, Metallurgical and Materials Transactions B 2 (1971) 2343-2357.
[10] G. Olson, M. Cohen, Metallurgical and Materials Transactions A 6 (1975) 791-795.
[11] J. Talonen, H. Hänninen, Acta Materialia 55 (2007) 6108-6118.
[12] G. Olson, M. Cohen, Journal of the Less Common Metals 28 (1972) 107-118.
[13] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, M. Ichihara, Acta Metallurgica 25 (1977) 1151-1162.
[14] S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metallurgical and Materials Transactions A 47 (2016) 49-58.
[15] B. De Cooman, Current Opinion in Solid State and Materials Science 8 (2004) 285-303.
[16] K.-i. Sugimoto, M. Tsunezawa, T. Hojo, S. Ikeda, ISIJ international 44 (2004) 1608-1614.
[17] P.J. Gibbs, Design considerations for the third generation advanced high strength steel, Colorado School of Mines. Arthur Lakes Library, 2012.
[18] S. Lee, S.-J. Lee, B.C. De Cooman, Scripta Materialia 65 (2011) 225-228.
[19] J. Hu, L.-X. Du, G.-S. Sun, H. Xie, R. Misra, Scripta Materialia 104 (2015) 87-90.
[20] T. Tsuchiyama, T. Inoue, J. Tobata, D. Akama, S. Takaki, Scripta Materialia 122 (2016) 36-39.
[21] J. Han, S.-J. Lee, J.-G. Jung, Y.-K. Lee, Acta Materialia 78 (2014) 369-377.
[22] S. Lee, S.-J. Lee, B.C. De Cooman, Acta Materialia 59 (2011) 7546-7553.
[23] S.-J. Lee, S. Lee, B.C. De Cooman, Scripta Materialia 64 (2011) 649-652.
[24] R. Miller, Metallurgical Transactions 3 (1972) 905-912.
[25] T. Furukawa, Materials Science and Technology 5 (1989) 465-470.
[26] K.-I. Sugimoto, M. Kobayashi, S.-I. Hashimoto, Metallurgical Transactions A 23 (1992) 3085-3091.
[27] K.-i. Sugimoto, N. Usui, M. Kobayashi, S.-i. Hashimoto, ISIJ international 32 (1992) 1311-1318.
[28] R. Rana, P.J. Gibbs, E. De Moor, J.G. Speer, D.K. Matlock, steel research international 86 (2015) 1139-1150.
[29] K.-i. Sugimoto, H. Tanino, J. Kobayashi, Materials Science and Engineering: A 688 (2017) 237-243.
[30] Y. TOMOTA, Tetsu-to-hagane 77 (1991) 315-325.
[31] 邱夢婷, 國立中山大學材料與光電科學所 碩士論文 (2017).
[32] 彭子庭, 國立中山大學材料與光電科學所 碩士論文 (2017).
[33] Y. Zhang, L. Wang, K.O. Findley, J.G. Speer, Metallurgical and Materials Transactions A 48 (2017) 2140-2149.
[34] H. Bhadeshia, Hot Workability of Steels and Light Alloys-Composites (1996) 543-556.
[35] H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties, Elsevier Science, 2011.
[36] E. Swallow, H. Bhadeshia, Materials Science and Technology 12 (1996) 121-125.
[37] P.H. Shipway, H. Bhadeshia, Materials Science and Technology 11 (1995) 1116-1128.
[38] K. Tsuzaki, T. Ueda, K. Fujiwara, T. Maki, New Materials and Processes for the Future (1989) 799-804.
[39] H. Bhadeshia, Le Journal de Physique IV 7 (1997) C5-367-C365-376.
[40] R. Mehl, ASM, Metals Park, OH 1 (1939).
[41] H. Ohtani, S. Okaguchi, Y. Fujishiro, Y. Ohmori, Metallurgical and Materials Transactions A 21 (1990) 877-888.
[42] J. Yin, M. Hillert, A. Borgenstam, Metallurgical and Materials Transactions A 48 (2017) 4006-4024.
[43] H. Bhadeshia, S. David, J. Vitek, R. Reed, Materials Science and Technology 7 (1991) 686-698.
[44] A. Matsuzaki, H. Bhadeshia, H. Harada, Acta Metallurgica et Materialia 42 (1994) 1081-1090.
[45] L. Chang, H. Bhadeshia, Journal of Materials Science 31 (1996) 2145-2148.
[46] J. Min, J. Lin, Y.a. Min, Journal of Materials Processing Technology 213 (2013) 818-825.
[1] T. Baumeister, L.S. Marks, Standard Handbook for Mechanical Engineers, 1967.
[2] A.Q. Khan, The effect of morphology on the strength of copper-based martensites, 1972.
[3] D. Fahr, Metallurgical and Materials Transactions B 2 (1971) 1883-1892.
[4] P. Maxwell, A. Goldberg, J. Shyne, Metallurgical and Materials Transactions B 5 (1974) 1305-1318.
[5] I. Tamura, Metal Science 16 (1982) 245-253.
[6] T. Maki, Microstructure and mechanical behaviour of ferrous martensite, Materials Science Forum, vol 56, Trans Tech Publ, 1990, pp. 157-168.
[7] H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Materialia 54 (2006) 1279-1288.
[8] A. Shibata, S. Morito, T. Furuhara, T. Maki, Acta Materialia 57 (2009) 483-492.
[9] G. Krauss, A. Marder, Metallurgical and Materials Transactions B 2 (1971) 2343-2357.
[10] G. Olson, M. Cohen, Metallurgical and Materials Transactions A 6 (1975) 791-795.
[11] J. Talonen, H. Hänninen, Acta Materialia 55 (2007) 6108-6118.
[12] G. Olson, M. Cohen, Journal of the Less Common Metals 28 (1972) 107-118.
[13] T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, M. Ichihara, Acta Metallurgica 25 (1977) 1151-1162.
[14] S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metallurgical and Materials Transactions A 47 (2016) 49-58.
[15] B. De Cooman, Current Opinion in Solid State and Materials Science 8 (2004) 285-303.
[16] K.-i. Sugimoto, M. Tsunezawa, T. Hojo, S. Ikeda, ISIJ international 44 (2004) 1608-1614.
[17] P.J. Gibbs, Design considerations for the third generation advanced high strength steel, Colorado School of Mines. Arthur Lakes Library, 2012.
[18] S. Lee, S.-J. Lee, B.C. De Cooman, Scripta Materialia 65 (2011) 225-228.
[19] J. Hu, L.-X. Du, G.-S. Sun, H. Xie, R. Misra, Scripta Materialia 104 (2015) 87-90.
[20] T. Tsuchiyama, T. Inoue, J. Tobata, D. Akama, S. Takaki, Scripta Materialia 122 (2016) 36-39.
[21] J. Han, S.-J. Lee, J.-G. Jung, Y.-K. Lee, Acta Materialia 78 (2014) 369-377.
[22] S. Lee, S.-J. Lee, B.C. De Cooman, Acta Materialia 59 (2011) 7546-7553.
[23] S.-J. Lee, S. Lee, B.C. De Cooman, Scripta Materialia 64 (2011) 649-652.
[24] R. Miller, Metallurgical Transactions 3 (1972) 905-912.
[25] T. Furukawa, Materials Science and Technology 5 (1989) 465-470.
[26] K.-I. Sugimoto, M. Kobayashi, S.-I. Hashimoto, Metallurgical Transactions A 23 (1992) 3085-3091.
[27] K.-i. Sugimoto, N. Usui, M. Kobayashi, S.-i. Hashimoto, ISIJ international 32 (1992) 1311-1318.
[28] R. Rana, P.J. Gibbs, E. De Moor, J.G. Speer, D.K. Matlock, steel research international 86 (2015) 1139-1150.
[29] K.-i. Sugimoto, H. Tanino, J. Kobayashi, Materials Science and Engineering: A 688 (2017) 237-243.
[30] Y. TOMOTA, Tetsu-to-hagane 77 (1991) 315-325.
[31] 邱夢婷, 國立中山大學材料與光電科學所 碩士論文 (2017).
[32] 彭子庭, 國立中山大學材料與光電科學所 碩士論文 (2017).
[33] Y. Zhang, L. Wang, K.O. Findley, J.G. Speer, Metallurgical and Materials Transactions A 48 (2017) 2140-2149.
[34] H. Bhadeshia, Hot Workability of Steels and Light Alloys-Composites (1996) 543-556.
[35] H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties, Elsevier Science, 2011.
[36] E. Swallow, H. Bhadeshia, Materials Science and Technology 12 (1996) 121-125.
[37] P.H. Shipway, H. Bhadeshia, Materials Science and Technology 11 (1995) 1116-1128.
[38] K. Tsuzaki, T. Ueda, K. Fujiwara, T. Maki, New Materials and Processes for the Future (1989) 799-804.
[39] H. Bhadeshia, Le Journal de Physique IV 7 (1997) C5-367-C365-376.
[40] R. Mehl, ASM, Metals Park, OH 1 (1939).
[41] H. Ohtani, S. Okaguchi, Y. Fujishiro, Y. Ohmori, Metallurgical and Materials Transactions A 21 (1990) 877-888.
[42] J. Yin, M. Hillert, A. Borgenstam, Metallurgical and Materials Transactions A 48 (2017) 4006-4024.
[43] H. Bhadeshia, S. David, J. Vitek, R. Reed, Materials Science and Technology 7 (1991) 686-698.
[44] A. Matsuzaki, H. Bhadeshia, H. Harada, Acta Metallurgica et Materialia 42 (1994) 1081-1090.
[45] L. Chang, H. Bhadeshia, Journal of Materials Science 31 (1996) 2145-2148.
[46] J. Min, J. Lin, Y.a. Min, Journal of Materials Processing Technology 213 (2013) 818-825.
[47] K.-I. Sugimoto, M. Kobayashi, S.-I. Hashimoto, Metallurgical and Materials Transactions A 23 (1992) 3085-3091.
[48] H. Beladi, A. Zarei-Hanzaki, G. Kelly, P. Hodgson, Materials Science and Technology 20 (2004) 213-220.
[49] H. Dong, X. Sun, Current Opinion in Solid State and Materials Science 9 (2005) 269-276.
[50] A. Mohamadizadeh, A. Zarei-Hanzaki, S. Heshmati-Manesh, A. Imandoust, Materials Science and Engineering: A 607 (2014) 621-629.
電子全文 電子全文(網際網路公開日期:20230903)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔