(3.235.25.169) 您好!臺灣時間:2021/04/18 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭雅如
研究生(外文):Ya-Ju Cheng
論文名稱:CuInSe2/TCO新型薄膜太陽電池元件研製
論文名稱(外文):Device simulation and fabrication of CuInSe2/TCO solar cells
指導教授:曾百亨曾百亨引用關係
指導教授(外文):Bae-Heng Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:100
中文關鍵詞:PC1D太陽電池元件模擬硒化銅銦CuInSe2透明導電膜(TCO)
外文關鍵詞:PC-1D solar-cell simulation toolCuInSe2Transparent Conductive Oxides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
承襲先前對於超薄矽晶太陽電池的元件模擬結果與經驗,試以高電子親和力與寬能隙的透明導電膜(TCO)如結晶態ITO取代Si,但因其非p-n接面,我們使用的PC-1D軟體無法進行模擬。因此轉而以p-CIS/n-TCO太陽電池元件結構為研究對象,先以n-AZO結合InSe,利用n-AZO/i-InSe/p-CIS的元件結構進行模擬以與先前n-Si/p-Si/p-InSe/p-CIS元件模擬結果做比較,由於能帶結構中價帶與導帶產生更大的落差使CIS主吸收層的電子電洞可以迅速分離,因此該元件最佳發電效率為33.6% (Voc=0.815V, Isc=51.5mA, FF=80.1%);再以更高能隙且電阻率更低的非晶態ITO與CIS形成n-p接面,最佳發電效率為35.8% (Voc=0.805V, Isc=51.6mA, FF=86.2%)。上述的模擬是以單晶CIS的電性數據代入並設定界面之載子復合速率為0 cm/s的計算結果,然而CIS磊晶技術尚未成熟,以現有的多晶CIS電性數據代入n-ITO/p-CIS元件結構則發電效率顯著降低至14% (Voc=0.629V, Isc=27.7mA, FF=83.2%)。若考慮界面複合速率的影響,其值由104cm/s提高到107cm/s時元件發電效率由13%降至4%。在元件製作方面,我們在鈉玻璃基板上依序鍍上Mo/p-CIS/n-ITO/Al的薄膜曡層,經過一些製程的改良包括Mo雙層膜的應力調整、摻加Sb改善CIS表面平整度等,在連續四次實驗中均未能獲致應有的元件特性。除了各層材料光電性質尚未能精確掌控,ITO/CIS界面性質也會是重要關鍵,若能在CIS先形成同質接面,我們的元件模擬顯示此法有助於元件製作的成功率。
Based on previous experience learned from our simulation on the ultrathin Si solar cells, we intend to use a transparent conductive oxide (TCO) with high electron affinity such as crystalline ITO to replace Si but the PC-1D simulation tool cannot run for the device structure which is not a p-n junction. Our focus is then turn to study the p-CIS/n-TCO junction devices. At first, a simulation was done for the n-AZO/i-InSe/p-CIS device structure for a comparison with our previous simulation result on the n-Si/p-Si/p-InSe/p-CIS structure. An energy conversion efficiency of 33.6% (Voc=0.815V, Isc=51.5mA, FF=80.1%) was obtained which was slightly higher than that of the previous structure. It was attributed to a higher band offset at the AZO/CIS interface which was more effectively to separate the electro-hole pairs caused by optical absorption. Further simulation using amorphous ITO with a higher bandgap and lower resistivity than those of AZO, the efficiency was increased to 35.8% (Voc=0.805V, Isc=51.6mA, FF=86.2%). The above simulations were based on the superior properties of single-crystalline CIS and the assumption on an ideal interface and surface (i.e. carrier recombination velocity is 0 cm/s). By using the material properties of polycrystalline CIS for simulation, the efficiency was considerably reduced to 14% (Voc=0.629V, Isc=27.7mA, FF=83.2%). Further investigation on the effect of carrier recombination velocity, the efficiency was decreased from 13% to 4% if the carrier recombination velocity varied from 104cm/s to 107cm/s. In this work, the devices were fabricated by sequentially depositing thin films of Mo/p-CIS/n-ITO/Al on soda-lime glass substrates and evaluated their device properties. Unfortunately, we were not able to succeed to attain a working device in four experiments, even through the adjustment of the stress in the bilayer Mo films and the improvement in the surface smoothness by surfactant modified growth of CIS with Sb. We noted that the precise control of the film properties and the modification of interface properties are crucial to realize a device with excellent performance. Our simulation also indicated that a buried CIS homojunction formed bellow the ITO layer might improve the device yield.
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 太陽電池簡介 1
1-2 新型矽晶太陽電池元件設計 6
1-3 研究動機與目的 9
第二章 文獻回顧 10
2-1 CuInSe2材料性質 10
2-2 CuInSe2薄膜成長機制 14
2-3 InSe材料性質 15
2-4 透明導電膜(TCO) 16
2-4-1 AZO材料性質與參數 16
2-4-2 ITO材料性質與參數 18
2-5 Mo背電極 21
第三章 實驗規劃及分析方法 22
3-1 實驗規劃及實驗流程 22
3-2 基板清洗 24
3-3 元件製備 24
3-3-1 CuInSe2薄膜製備 25
3-3-2 電極、透明導電層製備 28
3-4 分析方法 30
3-4-1 X光繞射儀(x-ray diffraction) 30
3-4-2 四點探針(Four point probe) 33
3-4-3 穿透光譜儀(Transmission spectrometers) 34
3-4-5 電流電壓特性曲線量測(I-V measurement) 35
3-4-6 場發射掃描電子顯微鏡(Scanning Electron Microscope) 35
3-4-7 PC1D模擬軟體 36
第四章 模擬結果與分析 37
4-1 n-AZO/i-InSe/p-CIS元件設計 38
4-1-1材料載子濃度與載子遷移率之對應關係 40
4-1-2元件模擬結果與討論 41
4-2 n-ITO/p-CIS元件設計 46
4-2-1 n-ITO載子濃度與載子遷移率之對應關係 47
4-2-2 元件模擬結果與討論 48
4-3 n-ITO/poly p-CIS元件設計 53
4-3-1 元件模擬結果與討論 54
4-4 界面複合速率之影響 57
4-4-1 元件模擬與討論 58
第五章 實驗結果與分析 60
5-1 Mo背電極與透明導電膜的鍍製 60
5-2 P型CIS薄膜之製備與量測 62
5-3 CIS太陽電池之前製 64
5-4 實際元件製成與量測 65
5-4-1 n-AZO/p-CIS元件 65
5-4-2 n-ITO/p-CIS元件no.1 69
5-4-3 n-ITO/p-CIS元件no.2 71
5-4-4 n-ITO/p-CIS:Sb元件 76
第六章 結論 82
參考資料 85
1.Ise, F., Photovoltaics report. Fraunhofer Institute for Solar Energy Systems ISE 2018.
2.NREL Efficiency Chart. https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed 20180408).
3.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of American Chemical Society 2009, 131 (17), 6050-6051.
4.Im, J.-H.; Kim, H.-S.; Park, N.-G., Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials 2014, 2 (8), 081510.
5.Green, M. A.; Ho-Baillie, A., Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. ACS Energy Letters 2017, 2 (4), 822-830.
6.Han, G.; Zhang, S.; Boix, P. P.; Wong, L. H.; Sun, L.; Lien, S.-Y., Towards high efficiency thin film solar cells. Progress in Materials Science 2017, 87, 246-291.
7.Noufi, R.; Zweibel, K., High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference 2006, 1, 317-320.
8.Powalla, M.; Paetel, S.; Hariskos, D.; Wuerz, R.; Kessler, F.; Lechner, P.; Wischmann, W.; Friedlmeier, T. M., Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se 2. Engineering 2017, 3 (4), 445-451.
9.Singh, U. P.; Patra, S. P., Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells. International Journal of Photoenergy 2010, 2010, 1-19.
10.Reinhard, P.; Chirila, A.; Blosch, P.; Pianezzi, F.; Nishiwaki, S.; Buecheler, S.; Tiwari, A. N., Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules. IEEE Journal of Photovoltaics 2013, 3 (1), 572-580.
11.Ramanujam, J.; Singh, U. P., Copper indium gallium selenide based solar cells – a review. Energy & Environmental Science 2017, 10 (6), 1306-1319.
12.Chirila, A.; Reinhard, P.; Pianezzi, F.; Bloesch, P.; Uhl, A. R.; Fella, C.; Kranz, L.; Keller, D.; Gretener, C.; Hagendorfer, H.; Jaeger, D.; Erni, R.; Nishiwaki, S.; Buecheler, S.; Tiwari, A. N., Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater 2013, 12 (12), 1107-1111.
13.Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 506-514.
14.陳新傑; 岳宏霖; 莊名凱; 陳方中, 鈣鈦礦太陽電池. 奈米通訊 2017, 24 (2), 21-26.
15.洪士傑. 以CuInSe2薄膜做為超薄矽晶太陽電池底部吸收層之元件模擬與評估. 國立中山大學材光所碩士論文, 2017.
16.Alonso, M. I.; Wakita, K.; Pascual, J.; Garriga, M.; Yamamoto, N., Optical functions and electronic structure ofCuInSe2,CuGaSe2,CuInS2,andCuGaS2. Physical Review B 2001, 63 (7), 075203.
17.Ramaiah, K. S.; Raja, V. S.; Bhatnagar, A. K.; Juang, F. S.; Chang, S. J.; Su, Y. K., Effect of annealing and γ-irradiation on the properties of CuInSe2 thin films. Materials Letters 2000, 45 (5), 251-261.
18.Abou-Elfotouh, F.; Dunlavy, D. J.; Coutts, T. J., Intrinsic defect states in CuInSe2 single crystals. Solar Cells 1989, 27 (1-4), 237-246.
19.劉禮寬. 製備CuInSe2磊晶薄膜並應用於超薄矽晶太陽電池. 國立中山大學材光所碩士論文, 2016.
20.楊登峻. 組成變化與成長條件對CuInSe2磊薄膜光電特性的影響. 國立中山大學材料所碩士論文, 1997.
21.Catalano, A., Polycrystalline thin-film technologies: Status and prospects. Solar Energy Materials and Solar Cells 1996, 41-42, 205-217.
22.Löher, T.; Koma, A., Epitaxial Growth of ZnSe on Si (111) with Lattice-Matched Layered InSe Buffer Layers. Japanese journal of applied physics 1998, 37 (9A), L1062-L1064.
23.Jaegermann, W.; Rudolph, R.; Klein, A.; Pettenkofer, C., Perspectives of the concept of van der Waals epitaxy: growth of lattice mismatched GaSe (0001) films on Si (111), Si (110) and Si (100). Thin Solid Films 2000, 380 (1-2), 276-281.
24.Vinh, L. T.; Eddrief, M.; Mahan, J. E.; Vantomme, A.; Song, J.; Nicolet, M.-A., The van der Waals epitaxial growth of GaSe on Si (111). Journal of applied physics 1997, 81 (11), 7289-7294.
25.Mudd, G.; Molas, M.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L., The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Scientific reports 2016, 6, 39619.
26.Mkawi, E.; Ibrahim, K.; Ali, M.; Farrukh, M.; Mohamed, A., The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu 2ZnSnS4 thin-film solar cells prepared by electrodeposition method. Applied Nanoscience 2015, 5 (8), 993-1001.
27.Ikhmayies, S. J.; El-Haija, N. M. A.; Ahmad-Bitar, R. N., A comparison between different ohmic contacts for ZnO thin films. Journal of Semiconductors 2015, 36 (3), 033005.
28.Ammaih, Y.; Lfakir, A.; Hartiti, B.; Ridah, A.; Thevenin, P.; Siadat, M., Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications. Optical and Quantum Electronics 2014, 46 (1), 229-234.
29.Nomoto, J.; Makino, H.; Yamamoto, T., Carrier mobility of highly transparent conductive Al-doped ZnO polycrystalline films deposited by radio-frequency, direct-current, and radio-frequency-superimposed direct-current magnetron sputtering: Grain boundary effect and scattering in the grain bulk. Journal of Applied Physics 2015, 117 (4), 045304.
30.Shen, H.-l.; Zhang, H.; Lu, L.-f.; Jiang, F.; Chao, Y., Preparation and properties of AZO thin films on different substrates. Progress in Natural Science: Materials International 2010, 20, 44-48.
31.Agashe, C.; Kluth, O.; Hüpkes, J.; Zastrow, U.; Rech, B.; Wuttig, M., Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. Journal of applied physics 2004, 95 (4), 1911-1917.
32.Han, S. I.; Kim, H. B., A Study on Properties of RF-sputtered Al-doped ZnO Thin Films Prepared with Different Ar Gas Flow Rates. Applied Science and Convergence Technology 2016, 25 (6), 145-148.
33.Senthilkumar, V.; Vickraman, P.; Jayachandran, M.; Sanjeeviraja, C., Structural and optical properties of indium tin oxide (ITO) thin films with different compositions prepared by electron beam evaporation. Vacuum 2010, 84 (6), 864-869.
34.Liu, T.; Zhang, X.; Zhang, J.; Wang, W.; Feng, L.; Wu, L.; Li, W.; Zeng, G.; Li, B., Interface study of ITO/ZnO and ITO/SnO2 complex transparent conductive layers and their effect on CdTe solar cells. International Journal of Photoenergy 2013, 2013.
35.Lam, W. Y. Electrical and optical properties of indium tin oxide. Hong Kong Baptist University, 2014.
36.Teixeira, V.; Cui, H.; Meng, L.; Fortunato, E.; Martins, R., Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films 2002, 420, 70-75.
37.Hamberg, I.; Granqvist, C. G., Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows. Journal of Applied Physics 1986, 60 (11), R123-R160.
38.陳芸夆. I-III-VI2薄膜太陽電池之研製. 國立中山大學材光所碩士論文, 2013.
39.Yoon, J.-H.; Cho, S.; Kim, W. M.; Park, J.-K.; Baik, Y.-J.; Lee, T. S.; Seong, T.-Y.; Jeong, J.-h., Optical analysis of the microstructure of a Mo back contact for Cu (In, Ga) Se2 solar cells and its effects on Mo film properties and Na diffusivity. Solar Energy Materials and Solar Cells 2011, 95 (11), 2959-2964.
40.Bae-Heng, T.; Geon-Wen, C.; Song-Bin, L., Influences of Sb on the Growth and Properties of CuInSe2 Thin Films. Japanese Journal of Applied Physics 1995, 34 (2S), 1109-1112.
41.蔣俊彥. CuInSe2磊晶薄膜之組成變化對光激光特性之影響. 國立中山大學材料所碩士論文, 1998.
42.林裕傑. CuInSe2太陽電池之研究. 國立中山大學材料所碩士論文, 2001.
43.林麗娟, X 光繞射原理及其應用. 工業材料雜誌 1994, 86, 105-109.
44.何政恩; 高振宏, SEM/EDS 的原理與操作應用之簡介半導體工業構裝材料. 化工技術 2003, 119 (5), 102-112.
45.Honsberg, C.; Bowden, S. PC1D. http://pveducation.org/pvcdrom/welcome-to-pvcdrom/pc1d (accessed 20180408).
46.劉士綸. 新型高效率超薄矽基異質接面太陽電池的元件結構設計模擬及製作. 國立中山大學材光所碩士論文, 2016.
47.An, Z.; Xiao-Ru, Z.; Li-Bing, D.; Jin-Ming, L.; Jian-Lin, Z., Numerical study on the dependence of ZnO thin-film transistor characteristics on grain boundary position. Chinese Physics B 2011, 20 (5), 057201.
48.Liu, Y.; Li, Y.; Zeng, H., ZnO-based transparent conductive thin films: doping, performance, and processing. Journal of Nanomaterials 2013, 2013.
49.Aldesogi Omer Hamed, N. A. M., Abdalsakhi.S.Mohammd, Montasir Salman Elfadel Tyfor, Effect of difference concentrations of Al on the optical properties
of AZO thin films. Journal of Applied Physics 2016, 8 (6), 40-45.
50.Sin, D. H.; Jo, S. B.; Lee, S. G.; Ko, H.; Kim, M.; Lee, H.; Cho, K., Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer. ACS applied materials & interfaces 2017, 9 (21), 18103-18112.
51.Ellmer, K.; Mientus, R., Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide. Thin solid films 2008, 516 (14), 4620-4627.
52.Preissler, N.; Bierwagen, O.; Ramu, A. T.; Speck, J. S., Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films. Physical Review B 2013, 88 (8), 085305.
53.Song, Y. Novel transparent conductive materials: understanding and prediction. Master of science in physics in Missouri university, 2011.
54.Ahrenkiel, R.; Dunlavy, D.; Hanak, T., Minority‐carrier lifetime in ITO/InP heterojunctions. Journal of applied physics 1988, 64 (4), 1916-1921.
55.Asaduzzaman, M.; Hasan, M.; Bahar, A. N., An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency. Springerplus 2016, 5, 578-586.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔