1.Ise, F., Photovoltaics report. Fraunhofer Institute for Solar Energy Systems ISE 2018.
2.NREL Efficiency Chart. https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed 20180408).
3.Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of American Chemical Society 2009, 131 (17), 6050-6051.
4.Im, J.-H.; Kim, H.-S.; Park, N.-G., Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials 2014, 2 (8), 081510.
5.Green, M. A.; Ho-Baillie, A., Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. ACS Energy Letters 2017, 2 (4), 822-830.
6.Han, G.; Zhang, S.; Boix, P. P.; Wong, L. H.; Sun, L.; Lien, S.-Y., Towards high efficiency thin film solar cells. Progress in Materials Science 2017, 87, 246-291.
7.Noufi, R.; Zweibel, K., High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference 2006, 1, 317-320.
8.Powalla, M.; Paetel, S.; Hariskos, D.; Wuerz, R.; Kessler, F.; Lechner, P.; Wischmann, W.; Friedlmeier, T. M., Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se 2. Engineering 2017, 3 (4), 445-451.
9.Singh, U. P.; Patra, S. P., Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells. International Journal of Photoenergy 2010, 2010, 1-19.
10.Reinhard, P.; Chirila, A.; Blosch, P.; Pianezzi, F.; Nishiwaki, S.; Buecheler, S.; Tiwari, A. N., Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules. IEEE Journal of Photovoltaics 2013, 3 (1), 572-580.
11.Ramanujam, J.; Singh, U. P., Copper indium gallium selenide based solar cells – a review. Energy & Environmental Science 2017, 10 (6), 1306-1319.
12.Chirila, A.; Reinhard, P.; Pianezzi, F.; Bloesch, P.; Uhl, A. R.; Fella, C.; Kranz, L.; Keller, D.; Gretener, C.; Hagendorfer, H.; Jaeger, D.; Erni, R.; Nishiwaki, S.; Buecheler, S.; Tiwari, A. N., Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater 2013, 12 (12), 1107-1111.
13.Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nature Photonics 2014, 8 (7), 506-514.
14.陳新傑; 岳宏霖; 莊名凱; 陳方中, 鈣鈦礦太陽電池. 奈米通訊 2017, 24 (2), 21-26.
15.洪士傑. 以CuInSe2薄膜做為超薄矽晶太陽電池底部吸收層之元件模擬與評估. 國立中山大學材光所碩士論文, 2017.16.Alonso, M. I.; Wakita, K.; Pascual, J.; Garriga, M.; Yamamoto, N., Optical functions and electronic structure ofCuInSe2,CuGaSe2,CuInS2,andCuGaS2. Physical Review B 2001, 63 (7), 075203.
17.Ramaiah, K. S.; Raja, V. S.; Bhatnagar, A. K.; Juang, F. S.; Chang, S. J.; Su, Y. K., Effect of annealing and γ-irradiation on the properties of CuInSe2 thin films. Materials Letters 2000, 45 (5), 251-261.
18.Abou-Elfotouh, F.; Dunlavy, D. J.; Coutts, T. J., Intrinsic defect states in CuInSe2 single crystals. Solar Cells 1989, 27 (1-4), 237-246.
19.劉禮寬. 製備CuInSe2磊晶薄膜並應用於超薄矽晶太陽電池. 國立中山大學材光所碩士論文, 2016.20.楊登峻. 組成變化與成長條件對CuInSe2磊薄膜光電特性的影響. 國立中山大學材料所碩士論文, 1997.21.Catalano, A., Polycrystalline thin-film technologies: Status and prospects. Solar Energy Materials and Solar Cells 1996, 41-42, 205-217.
22.Löher, T.; Koma, A., Epitaxial Growth of ZnSe on Si (111) with Lattice-Matched Layered InSe Buffer Layers. Japanese journal of applied physics 1998, 37 (9A), L1062-L1064.
23.Jaegermann, W.; Rudolph, R.; Klein, A.; Pettenkofer, C., Perspectives of the concept of van der Waals epitaxy: growth of lattice mismatched GaSe (0001) films on Si (111), Si (110) and Si (100). Thin Solid Films 2000, 380 (1-2), 276-281.
24.Vinh, L. T.; Eddrief, M.; Mahan, J. E.; Vantomme, A.; Song, J.; Nicolet, M.-A., The van der Waals epitaxial growth of GaSe on Si (111). Journal of applied physics 1997, 81 (11), 7289-7294.
25.Mudd, G.; Molas, M.; Chen, X.; Zólyomi, V.; Nogajewski, K.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Yusa, G.; Makarovsky, O.; Eaves, L., The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Scientific reports 2016, 6, 39619.
26.Mkawi, E.; Ibrahim, K.; Ali, M.; Farrukh, M.; Mohamed, A., The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu 2ZnSnS4 thin-film solar cells prepared by electrodeposition method. Applied Nanoscience 2015, 5 (8), 993-1001.
27.Ikhmayies, S. J.; El-Haija, N. M. A.; Ahmad-Bitar, R. N., A comparison between different ohmic contacts for ZnO thin films. Journal of Semiconductors 2015, 36 (3), 033005.
28.Ammaih, Y.; Lfakir, A.; Hartiti, B.; Ridah, A.; Thevenin, P.; Siadat, M., Structural, optical and electrical properties of ZnO: Al thin films for optoelectronic applications. Optical and Quantum Electronics 2014, 46 (1), 229-234.
29.Nomoto, J.; Makino, H.; Yamamoto, T., Carrier mobility of highly transparent conductive Al-doped ZnO polycrystalline films deposited by radio-frequency, direct-current, and radio-frequency-superimposed direct-current magnetron sputtering: Grain boundary effect and scattering in the grain bulk. Journal of Applied Physics 2015, 117 (4), 045304.
30.Shen, H.-l.; Zhang, H.; Lu, L.-f.; Jiang, F.; Chao, Y., Preparation and properties of AZO thin films on different substrates. Progress in Natural Science: Materials International 2010, 20, 44-48.
31.Agashe, C.; Kluth, O.; Hüpkes, J.; Zastrow, U.; Rech, B.; Wuttig, M., Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. Journal of applied physics 2004, 95 (4), 1911-1917.
32.Han, S. I.; Kim, H. B., A Study on Properties of RF-sputtered Al-doped ZnO Thin Films Prepared with Different Ar Gas Flow Rates. Applied Science and Convergence Technology 2016, 25 (6), 145-148.
33.Senthilkumar, V.; Vickraman, P.; Jayachandran, M.; Sanjeeviraja, C., Structural and optical properties of indium tin oxide (ITO) thin films with different compositions prepared by electron beam evaporation. Vacuum 2010, 84 (6), 864-869.
34.Liu, T.; Zhang, X.; Zhang, J.; Wang, W.; Feng, L.; Wu, L.; Li, W.; Zeng, G.; Li, B., Interface study of ITO/ZnO and ITO/SnO2 complex transparent conductive layers and their effect on CdTe solar cells. International Journal of Photoenergy 2013, 2013.
35.Lam, W. Y. Electrical and optical properties of indium tin oxide. Hong Kong Baptist University, 2014.
36.Teixeira, V.; Cui, H.; Meng, L.; Fortunato, E.; Martins, R., Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films 2002, 420, 70-75.
37.Hamberg, I.; Granqvist, C. G., Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows. Journal of Applied Physics 1986, 60 (11), R123-R160.
38.陳芸夆. I-III-VI2薄膜太陽電池之研製. 國立中山大學材光所碩士論文, 2013.39.Yoon, J.-H.; Cho, S.; Kim, W. M.; Park, J.-K.; Baik, Y.-J.; Lee, T. S.; Seong, T.-Y.; Jeong, J.-h., Optical analysis of the microstructure of a Mo back contact for Cu (In, Ga) Se2 solar cells and its effects on Mo film properties and Na diffusivity. Solar Energy Materials and Solar Cells 2011, 95 (11), 2959-2964.
40.Bae-Heng, T.; Geon-Wen, C.; Song-Bin, L., Influences of Sb on the Growth and Properties of CuInSe2 Thin Films. Japanese Journal of Applied Physics 1995, 34 (2S), 1109-1112.
41.蔣俊彥. CuInSe2磊晶薄膜之組成變化對光激光特性之影響. 國立中山大學材料所碩士論文, 1998.
42.林裕傑. CuInSe2太陽電池之研究. 國立中山大學材料所碩士論文, 2001.43.林麗娟, X 光繞射原理及其應用. 工業材料雜誌 1994, 86, 105-109.
44.何政恩; 高振宏, SEM/EDS 的原理與操作應用之簡介半導體工業構裝材料. 化工技術 2003, 119 (5), 102-112.
45.Honsberg, C.; Bowden, S. PC1D. http://pveducation.org/pvcdrom/welcome-to-pvcdrom/pc1d (accessed 20180408).
46.劉士綸. 新型高效率超薄矽基異質接面太陽電池的元件結構設計模擬及製作. 國立中山大學材光所碩士論文, 2016.47.An, Z.; Xiao-Ru, Z.; Li-Bing, D.; Jin-Ming, L.; Jian-Lin, Z., Numerical study on the dependence of ZnO thin-film transistor characteristics on grain boundary position. Chinese Physics B 2011, 20 (5), 057201.
48.Liu, Y.; Li, Y.; Zeng, H., ZnO-based transparent conductive thin films: doping, performance, and processing. Journal of Nanomaterials 2013, 2013.
49.Aldesogi Omer Hamed, N. A. M., Abdalsakhi.S.Mohammd, Montasir Salman Elfadel Tyfor, Effect of difference concentrations of Al on the optical properties
of AZO thin films. Journal of Applied Physics 2016, 8 (6), 40-45.
50.Sin, D. H.; Jo, S. B.; Lee, S. G.; Ko, H.; Kim, M.; Lee, H.; Cho, K., Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer. ACS applied materials & interfaces 2017, 9 (21), 18103-18112.
51.Ellmer, K.; Mientus, R., Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide. Thin solid films 2008, 516 (14), 4620-4627.
52.Preissler, N.; Bierwagen, O.; Ramu, A. T.; Speck, J. S., Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films. Physical Review B 2013, 88 (8), 085305.
53.Song, Y. Novel transparent conductive materials: understanding and prediction. Master of science in physics in Missouri university, 2011.
54.Ahrenkiel, R.; Dunlavy, D.; Hanak, T., Minority‐carrier lifetime in ITO/InP heterojunctions. Journal of applied physics 1988, 64 (4), 1916-1921.
55.Asaduzzaman, M.; Hasan, M.; Bahar, A. N., An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency. Springerplus 2016, 5, 578-586.