(3.236.228.250) 您好!臺灣時間:2021/04/17 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周子修
研究生(外文):Tzu-Hsiu Chou
論文名稱:以晶粒細化研究FeCoNiCrMnAl高熵合金之超塑性
論文名稱(外文):Evaluation of superplasticity-like behavior through grain refinement in FeCoNiCrMnAl high entropy alloy
指導教授:黃志青黃志青引用關係
指導教授(外文):Jacob Chih-Ching Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:131
中文關鍵詞:高熵合金電弧熔煉真空感應熔煉超音波珠擊製程熱機械處理超塑性
外文關鍵詞:surface mechanical attrition treatmentvacuum induction meltinghigh entropy alloyarc-meltingsuperplasticitythermomechanical treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:44
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前大多數的高熵合金皆以單相合金系統為主要研究,室溫下,其典型的鑄造合金特性分別為大晶粒和低強度,而許多文獻指出,部分高熵合金具有比一般傳統合金較優異的高溫機械性質,如耐火高熵合金及雙相高熵合金。

本文研究經由比較由電弧熔煉 (arc-melting) 及真空感應熔煉 (VIM) 兩種製程之鑄造態高熵合金,發現後者明顯改善因鑄造過程所產生的缺陷,因此預期有較高的應用潛能。透過超音波珠擊製程(SMAT)與熱機械處理(TMT)探討Fe17.6Co17.6Ni17.6Cr17.6Mn17.6-Al12 (雙相BCC+FCC)之高溫超塑性質,兩相體積分率約為40% 比60%,並且探討該系列高熵合金在高溫下顯微結構之變化,並與Fe20Co20Ni20Cr20Mn20 (單相FCC)之高溫變形機制做比較。

試片表面經微珠擊製程處理後,試片的機械性質與顯微結構,如晶粒大小、試片強度、影響深度先作系統地歸納與整理,再將加工後的試片進行高溫拉伸試驗。而目前經由熱機械處理之Fe17.6Co17.6Ni17.6Cr17.6Mn17.6-Al12軋延薄板,在高溫800℃及應變速率1 × 10-4 s-1條件下,已具有類超塑性質之表現,伸長率達250%。後續可著重參數調控,分別找出在不同溫度以及應變速率下,可達到最大延伸量的最佳參數,評估超塑性質的表現。
At present, most of the high-entropy alloys are mainly focused on single-phase alloy systems. Typical properties of cast alloys at room temperature are large grains and low strength. Compared with conventional alloys, some reported high-entropy alloys such as refractory and duplex phase high entropy alloys are believed to possess promising high temperature mechanical properties.

In this research, by comparing the cast-state high-entropy alloys by arc-melting and vacuum induction melting (VIM) processes, it was found that the latter can significantly improve the defects caused by the cast process, and thus it is expected to have a high potential for future application. We also evaluate the potential for achieving superplastic performance in Fe17.6Co17.6Ni17.6Cr17.6Mn17.6-Al12 with dual phase (BCC+FCC) through ultrasonic beating process (SMAT) and thermomechanical treatment (TMT). The volume phase ratio is about 40% to 60%. Although there have already been reports of superplasticity in microduplex high entropy alloys, the occurrence of superplasticity has not been reported in this alloy. Also, the microstructures varied with elevated temperature have been carefully examined. Finally, the high temperature deformation mechanism is explored and compared with that of Fe20Co20Ni20Cr20Mn20 with single-phase (FCC).

After the specimens processed by SMAT, the mechanical properties and microstructures after the processing, such as sample hardness, experienced depth, and grain size, etc., are systematically examined and rationalized. Then the high temperature tensile tests are conducted. So far, the Fe17.6Co17.6Ni17.6Cr17.6Mn17.6-Al12 rolled sheet subjected to thermomechanical treatment (TMT) shows the elongation to failure ~250% along the rolling direction at 1073 K and a strain rate of 1 × 10-4 s-1. Subsequent emphasis can be placed on the control parameters to find the optimal parameters for maximum elongation at different temperatures and strain rates, and to evaluate the mechanism of superplastic deformation.
論文審定書 i
中文摘要 ii
Abstract iii
List of Figures viii
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Background and literature review 3
2.1 Introduction to high entropy alloy 3
2.1.1 Development 3
2.1.2 Definition 4
2.1.2.1 Composition 4
2.1.2.2 Entropy 5
2.1.2.3 Phase selection 8
2.1.3 Four core effects 10
2.1.3.1 The high entropy effect 10
2.1.3.2 The lattice distortion effect 11
2.1.3.3 The sluggish diffusion effect 12
2.1.3.4 The cocktail effect 13
2.1.4 Effect of Al 13
2.2 Superplasticity 14
2.2.1 Introduction 14
2.2.2 Types 17
2.2.2.1 Fine-structure superplasticity (FSS) 17
2.2.2.2 Internal-stress superplasticity (ISS) 19
2.2.2.3 High strain rate superplasticity (HSRS) 19
2.2.2.4 Coarse-grained superplasticity (CGS) 20
2.2.2.5 Other mechanisms 21
Chapter 3 Experimental Procedures 22
3.1 Materials preparation 22
3.1.1 As-cast 22
3.1.2 Homogenization 22
3.1.3 Hot rolling 23
3.2 Grain refinement processes 23
3.2.2 Thermo-mechanical treatment (TMT) 24
3.3 Evaluation of superplastic behavior 24
3.3.1 Tensile testing 24
3.3.2 Strain rate sensitivity (m-value) 25
3.4.1 Sample preparation 25
3.4.2 X-ray diffraction (XRD) 26
3.4.3 Scanning electron microscopy (SEM) 26
3.4.4 Electron back scattered diffraction (EBSD) 26
3.4.5 Transmission electron microscopy (TEM) 27
Chapter 4 Results and Discussions 28
4.1 Analysis of raw materials 28
4.1.1 Arc-melting 28
4.1.1.1 Compositional identification 28
4.1.1.2 XRD analysis 29
4.1.1.3 Microstructure observation 29
4.1.2 Vacuum induction melting (VIM) 30
4.1.2.1 Compositional identification 31
4.1.2.2 XRD analysis 31
4.1.2.3 Microstructure observation 32
4.2 Characterization of grain refinement 33
4.2.1 Hot rolling 33
4.2.2 Thermo-mechanical treatment (TMT) 34
4.2.2.1 Differential thermal analysis (DTA) 35
4.2.2.2 Microstructure 35
4.3 High temperature tensile tests 36
Chapter 5 Future Works 37
References 38
Tables 46
Figures 54
[1] M.F. Ashby, Materials selection in mechanical design, Metallurgia Italiana 86 (1994) 475-475.
[2] A. International, A.I.H. Committee, A.I.A.P.D. Committee, Metals Handbook: Properties and selection, ASM international1990.
[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303.
[4] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375-377 (2004) 213-218.
[5] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science 61 (2014) 1-93.
[6] C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, J.W. Yeh, Microstructure and Mechanical Properties of New AlCoxCrFeMo0. 5Ni High‐Entropy Alloys, Advanced Engineering Materials 12(1‐2) (2010) 44-49.
[7] J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, H.-C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear 261(5-6) (2006) 513-519.
[8] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys, Acta Materialia 59(16) (2011) 6308-6317.
[9] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat 31(6) (2006) 633-648.
[10] O. Senkov, G. Wilks, J. Scott, D. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706.
[11] O. Senkov, G. Wilks, D. Miracle, C. Chuang, P. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765.
[12] A. Ruffa, Thermal potential, mechanical instability, and melting entropy, Physical Review B 25(9) (1982) 5895.
[13] C.A. Gearhart, Einstein before 1905: The early papers on statistical mechanics, American Journal of Physics 58(5) (1990) 468-480.
[14] B.S. Murty, J.-W. Yeh, S. Ranganathan, High-entropy alloys, Butterworth-Heinemann2014.
[15] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.
[16] R.W. Cahn, P. Haasen, Physical Metallurgy, Elsevier Science1996.
[17] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Advanced Engineering Materials 10(6) (2008) 534-538.
[18] G. Sheng, C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase, Progress in Natural Science: Materials International 21(6) (2011) 433-446.
[19] K. Zhang, Z. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys, Intermetallics 22 (2012) 24-32.
[20] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications, Entropy 16(1) (2014) 494-525.
[21] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375 (2004) 213-218.
[22] Y. Zhang, X. Yang, P. Liaw, Alloy design and properties optimization of high-entropy alloys, Jom 64(7) (2012) 830-838.
[23] M. Lucas, G. Wilks, L. Mauger, J.A. Munoz, O.N. Senkov, E. Michel, J. Horwath, S. Semiatin, M.B. Stone, D.L. Abernathy, Absence of long-range chemical ordering in equimolar FeCoCrNi, Applied Physics Letters 100(25) (2012) 251907.
[24] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Materials chemistry and physics 103(1) (2007) 41-46.
[25] Y. Zhou, Y. Zhang, Y. Wang, G. Chen, Solid solution alloys of Al Co Cr Fe Ni Ti x with excellent room-temperature mechanical properties, Applied physics letters 90(18) (2007) 181904.
[26] Y. Zhang, Y. Zhou, X. Hui, M. Wang, G. Chen, Minor alloying behavior in bulk metallic glasses and high-entropy alloys, Science in China Series G: Physics, Mechanics and Astronomy 51(4) (2008) 427-437.
[27] K.-H. Cheng, C.-H. Lai, S.-J. Lin, J.-W. Yeh, Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets, Annales de chimie, Lavoisier, 2006, pp. 723-736.
[28] K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897.
[29] Y. Chen, T. Duval, U. Hong, J. Yeh, H. Shih, L. Wang, J. Oung, Corrosion properties of a novel bulk Cu0. 5NiAlCoCrFeSi glassy alloy in 288° C high-purity water, Materials Letters 61(13) (2007) 2692-2696.
[30] S. Singh, N. Wanderka, B. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Materialia 59(1) (2011) 182-190.
[31] M.-H. Tsai, J.-W. Yeh, J.-Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films 516(16) (2008) 5527-5530.
[32] M.-H. Tsai, C.-W. Wang, C.-W. Tsai, W.-J. Shen, J.-W. Yeh, J.-Y. Gan, W.-W. Wu, Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization, Journal of the Electrochemical Society 158(11) (2011) H1161-H1165.
[33] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Current science 85(10) (2003) 1404-1406.
[34] Y. Zhang, Z. Lu, S. Ma, P. Liaw, Z. Tang, Y. Cheng, M. Gao, Guidelines in predicting phase formation of high-entropy alloys, Mrs Communications 4(2) (2014) 57-62.
[35] R. Honeycomb, H. Bhadeshia, Steels, Microstructure and Properties, Metallurgy and Materials Science, Edward Arnold Butterworth Heinemann, London, England1995.
[36] U.S. Hsu, U.D. Hung, J.W. Yeh, S.K. Chen, Y.S. Huang, C.C. Yang, Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys, Materials Science and Engineering: A 460-461 (2007) 403-408.
[37] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics 26 (2012) 44-51.
[38] C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, H.-C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Materials Letters 61(1) (2007) 1-5.
[39] C. Jantzen, H. Herman, Spinoidal Decomposition--Phase Diagram Representation and Occurrence, Refractory Materials. Vol. 6-V. Phase Diagrams: Materials Science and Technology (1978) 127-184.
[40] S. Para, Spinodal transformation structures, Materials Park, OH: ASM International, 2004. (2004) 140-143.
[41] O.D. Sherby, J. Wadsworth, Superplasticity—recent advances and future directions, Progress in Materials Science 33(3) (1989) 169-221.
[42] N. Ridley, Superplastic microstructures, Materials Science and Technology 6(11) (1990) 1145-1156.
[43] A.H. Chokshi, A.K. Mukherjee, T.G. Langdon, Superplasticity in advanced materials, Materials Science and Engineering: R: Reports 10(6) (1993) 237-274.
[44] T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, Journal of materials science 44(22) (2009) 5998.
[45] G.E. Dieter, D.J. Bacon, Mechanical metallurgy, McGraw-hill New York1986.
[46] J.W. Edington, Microstructural aspects of superplasticity, Metallurgical Transactions A 13(5) (1982) 703-715.
[47] I. Hsiao, J. Huang, Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy, Metallurgical and Materials Transactions A 33(5) (2002) 1373-1384.
[48] O.D. Sherby, J. Wadsworth, Deformation processing and structure, Metals Park,(ASM, Ohio, 1982) pp (1984) 355-388.
[49] S. McFadden, R.S. Mishra, R. Valiev, A. Zhilyaev, A. Mukherjee, Low-temperature superplasticity in nanostructured nickel and metal alloys, Nature 398(6729) (1999) 684.
[50] R. Valiev, A. Korznikov, R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Materials Science and Engineering: A 168(2) (1993) 141-148.
[51] A. Sergueeva, V. Stolyarov, R. Valiev, A. Mukherjee, Enhanced superplasticity in a Ti-6Al-4V alloy processed by severe plastic deformation, Scripta Materialia 43(9) (2000) 819-824.
[52] J. Weertman, Steady‐state creep of crystals, Journal of Applied Physics 28(10) (1957) 1185-1189.
[53] W.R. Cannon, O.D. Sherby, High temperature creep behavior of class I and class II solid solution alloys, Metallurgical Transactions 1(4) (1970) 1030-1032.
[54] X. Wu, Y. Liu, Superplasticity of coarse-grained magnesium alloy, Scripta Materialia 46(4) (2002) 269-274.
[55] Y. Liu, X. Wu, Z. Li, Super plasticity and micro structural evolution of a large-grained Mg alloy, Proceedings of International Symposium on Materials Science and Technology. Harbin, China, 2000, pp. 127-130.
[56] X. Wu, Y. Liu, H. Hao, High strain rate superplasticity and microstructure study of a magnesium alloy, Materials science forum, Trans Tech Publ, 2001, pp. 363-370.
[57] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Materialia 62 (2014) 105-113.
[58] P.D. Jablonski, J.J. Licavoli, M.C. Gao, J.A. Hawk, Manufacturing of high entropy alloys, JOM 67(10) (2015) 2278-2287.
[59] T. Nieh, J. Wadsworth, Effects of Zr on the high strain rate superplasticity of 2124 Al, Scripta Metallurgica et Materialia;(United States) 28(9) (1993).
[60] Z. Cui, W. Zhong, Q. Wei, Superplastic behavior at high strain rate of rapidly solidified powder metallurgy Al-Li alloy, Scripta Metallurgica et Materialia;(United States) 30(1) (1994).
[61] H. Cho, H. Jeong, M. Kim, H. Yamagata, High strain rate superplasticity in powder metallurgy processed Al-16Si-5Fe alloy, Scripta materialia 42(3) (2000).
[62] M. Mabuchi, K. Higashi, K. Inoue, S. Tanimura, Experimental investigation of superplastic behavior in a 20 vol% Si3N4p5052 aluminum composite, Scripta metallurgica et materialia 26(12) (1992) 1839-1844.
[63] M. Mabuchi, T. Imai, K. Kubo, K. Higashi, Y. Okada, S. Tanimura, Very high strain-rate superplasticity in a particulate Si3N4/6061 aluminum composite, Scripta Metallurgica et Materialia;(United States) 25 (1991).
[64] M. Mabuchi, K. Higashi, Y. Okada, S. Tanimura, T. Imai, K. Kubo, Superplastic behavior at high strain rates in a particulate Si3N46061 aluminum composite, Scripta metallurgica et materialia 25(9) (1991) 2003-2006.
[65] T. Nieh, C. Henshall, J. Wadsworth, Superplasticity at high strain rates in a SiC Whisker reinforced A1 alloy, Scripta metallurgica 18(12) (1984) 1405-1408.
[66] R.S. Mishra, R. Valiev, S. McFadden, R. Islamgaliev, A. Mukherjee, Severe plastic deformation processing and high strain rate superplasticity in an aluminum matrix composite, (1999).
[67] M. Mabuchi, T. Asahina, H. Iwasaki, K. Higashi, Experimental investigation of superplastic behaviour in magnesium alloys, Materials science and technology 13(10) (1997) 825-831.
[68] T. Nieh, J. Wadsworth, Superplasticity in a powder metallurgy magnesium composite, Scripta metallurgica et materialia 32(8) (1995).
[69] T. Nieh, A. Schwartz, J. Wadsworth, Superplasticity in a 17 vol.% SiC particulate-reinforced ZK60A magnesium composite (ZK60/SiC/17p), Materials Science and Engineering: A 208(1) (1996) 30-36.
[70] S.W. Lim, T. Imai, Y. Nishida, T. Choh, High strain rate superplasticity of TiC particulate reinforced magnesium alloy composite by vortex method, Scripta metallurgica et materialia 32(11) (1995).
[71] H. Pu, J. Huang, Low temperature superplasticity in 8090 Al-Li alloys, Scripta metallurgica et materialia 28 (1993) 1125-1125.
[72] I. Hsiao, J. Huang, Development of low temperature superplasticity in commercial 5083 Al-Mg alloys, Scripta materialia 40(6) (1999) 697-703.
[73] H. Watanabe, T. Mukai, T. Nieh, K. Higashi, Low temperature superplasticity in a magnesium-based composite, Scripta materialia 42(3) (2000).
[74] T.K. Ha, W. Beomlee, C.G. Park, Y.W. Chang, Room-temperature superplasticity in a Zn-0.3 Wt Pct Al alloy, Metallurgical and Materials Transactions A 28(8) (1997) 1711-1713.
[75] V. Imayev, G. Salishchev, M. Shagiev, A. Kuznetsov, R. Imayev, O. Senkov, F. Froes, Low-temperature superplasticity of submicrocrystalline Ti-48Al-2Nb-2Cr alloy produced by multiple forging, Scripta Materialia 40(2) (1998) 183-190.
[76] T. McNelley, E. Lee, M. Mills, Superplasticity in a thermomechanically processed High-Mg, Al-Mg alloy, Metallurgical Transactions A 17(6) (1986) 1035-1041.
[77] M.-H. Tsai, J.-W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters 2(3) (2014) 107-123.
電子全文 電子全文(網際網路公開日期:20220121)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔