(18.207.129.82) 您好!臺灣時間:2021/04/19 20:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林韋丞
研究生(外文):Wei Cheng Lin
論文名稱:拓樸絕緣體BiSbTe3薄片的Aharonov-Bohm振盪
論文名稱(外文):The Aharonov-Bohm oscillations in the BiSbTe3 topological insulator macroflake
指導教授:黃旭明黃旭明引用關係
指導教授(外文):Shiu-Ming Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:41
中文關鍵詞:BiSbTe3Aharonov-Bohm震盪磁阻(magnetoresistance ratio)載子遷移率拓樸絕緣體
外文關鍵詞:mobilityAharonov-Bohm oscillationmagnetoresistance ratioBiSbTe3Topological Insulator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗報導BiSbTe3(鉍銻碲)薄片在量測時觀測到的Aharonov-Bohm 效應,藉由運用物理性質量測系統(PPMS)來量測其在低溫高磁的環境的變化 。
而實驗數據所展示的磁阻率(Magnetoresistance Ratio)週期的震盪,其指數顯示Berry phase為π。這表示震盪是來自於表面態(surface state)。進一步分析發現Aharonov-Bohm震盪頻率會隨著溫度降低而增加,其相對應相的相干長度會與弱局域趨勢一致。且其相位的相干長度會與T(-1/2) 成正比。而磁阻率(Magnetoresistance Ratio)在9 T(14 T)會達到700% (1000%)且與電子遷移率成正比,且磁阻率大於目前所有報導的(Bi, Sb)2(Te, Se)3系列的拓樸絕緣體。
We report the Aharonov-Bohm (AB) oscillation in the BiSbTe3 topological insulator macroflake. The magnetoresistance reveals periodic oscillations. The oscillation index number reveals theBerry phase is p which supports the oscillation originates from the surface state. The AB oscillation frequency increases as temperature decreases, and the corresponding phase coherence length is consistent with that extracted from the weak antilocalization.
The phase coherence length is propor-tional to T-1/2. The magnetoresistance ratio reaches 700% (1000%) at 9 T (14 T) and 2 K, and it is proportional to the carrier mobility. The magnetoresistance ratio is larger than all reported values in (Bi, Sb)2(Te, Se)3 topological insulators
目錄
摘要 ii
ABSTRACT iii
目錄 iv
圖 次 vi
第一章簡介 1
1-1 前言 1
1-2 研究動機 2
第二章基本理論 3
2-1 拓樸絕緣體(Topological Insulator) 3
2-2 霍爾效應(Hall effect) 5
2-3 量子霍爾效應(Quantum Hall effect) 7
2-4 量子自旋霍爾效應(Quantum spin Hall effect) 8
2-5 Aharonov-Bohm 震盪效應 9
第三章樣品製備與儀器介紹 11
3-1 樣品製備 11
3-2 量測系統與方法 12
3-2-1 物理性質量測系統t 12
3-2-2 量測方法 15
3-3 三維輪廓儀(3D Alpha-Step Profilometer) 16
第四章實驗結果與討論 17
4-1 實驗架構 17
4-2結果討論 18
4-2-1剩餘電阻比 (Residual Resistance Ratio,RRR) 18
4-2-2 Aharonov-Bohm震盪分析 19
4-2-3 Aharonov-Bohm震盪分析----Berry phase 21
4-2-4 Aharonov-Bohm震盪分析----FFT 23
4-2-5 Aharonov-Bohm震盪分析----機制原因 25
4-2-6 磁阻率(Magnetoresistance Ratio) 28
第五章結論 30
參考文獻 31
參考文獻
[1] M. Z. Hasan, and C. L. Kane, “Topological insulators”, Rev. Mod. Phys. 82, 3045 (2010)
[2] L. X. Wang, C. Z. Li, D. P. Yu, and Z. M. Liao, “Aharonov–Bohm oscillations in Dirac semimetal Cd3As2 nanowires” Nature Communications 7, 10769 (2016).
[3] S. Cho, B. Dellabetta, R. Zhong, J. Schneeloch, T. Liu, G. Gu, M. J. Gilbert, and N. Mason, “Aharonov–Bohm oscillations in a quasi-ballistic three-dimensional topological insulator nanowire” Nature Communications 6, 7634 (2015).
[4] F. Xiu, L. He, Y. Wang, L. Cheng, L.-T. Chang, M. Lang, G. Huang, X. Kou, Y. Zhou, X. Jiang et al., “Manipulating surface states in topological insulator nanoribbons” Nature Nanotechnol. 6, 216 (2011).
[5] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.- X. Shen, and Y. Cui, “Aharonov–Bohm interference in topological insulator nanoribbons” Nature Materials 9, 225 (2010).
[6] B. Hamdou, J. Gooth, A. Dorn, E. Pippel, and K. Nielsch, “Aharonov-Bohm oscillations and weak antilocalization in topological insulator Sb2Te3 nanowires” Applied Physics Letters 102, 223110 (2013).
[7] C. L. Kane and E. J. Mele, “Z2 Topological Order and the Quantum Spin Hall Effect”, Phys. Rev. Lett. 95, 146802 (2005)
[8] C. Xu, and J. E. Moore, “Stability of the quantum spin Hall effect: effects of
interactions, disorder, and Z_2 topology”, Phys. Rev. B 58, 045322 (2006)
[9] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase”, Nature 452, 970 (2008)
[10] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of Unconventional Quantum Spin Textures in Topological Insulators”, Science 323, 919 (2009)
[11] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface”, Nat. Phys. 5, 398 (2009).
[12] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, “Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3”, Science 325, 178 (2009).
[13] K. Shrestha, V. Marinova, B. Lorenz, and P. C. W. Chu, “Shubnikov de Haas
oscillations from topological surface states of metallic Bi2Se2.1Te0.9”, Phys. Rev. B90, 241111(R) (2014)
[14] Y. Ando,“Topological Insulator Materials”, J. Phys. Soc. Jpn. 82, 102001
(2013)
[15] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological
insulators in
電子全文 電子全文(網際網路公開日期:20230831)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔