跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張晨煦
研究生(外文):Chen-Hsu Chang
論文名稱:氧化對層狀硒化銦場效電晶體載子傳輸的影響
論文名稱(外文):The Influence of Oxidation on Transport Properties of Few-Layered Indium Selenide Field-Effect Transistor
指導教授:盧怡穎盧怡穎引用關係
指導教授(外文):Yi-Ying Lu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:91
中文關鍵詞:光電子能譜拉曼光譜陷阱硒化銦場效電晶體
外文關鍵詞:X-ray photoelectron spectroscopyRaman spectroscopyTrapsField-effect transistorsIndium selenide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
  硒化銦作為通道的場效電晶體具有許多優越的特性,例如高載子遷移率及高開關比,另外相較於黑磷以及硒化鎵,硒化銦在空氣中較為穩定,雖然不容易與其他分子進行化學反應,然而表面吸附的分子會影響元件運作的特性,這是因為表面的吸附分子為陷阱電荷,然而吸附分子並不能產生穩定的缺陷,因此在本研究中將利用感應式耦合電漿進行硒化銦場效電晶體表面的氧化,製造出穩定的缺陷,並深入研究表面缺陷對硒化銦電晶體運作的影響。
  首先利用拉曼來探討硒化銦氧化後的鍵結情況,實驗結果發現使用的雷射光功率會影響到氧化的程度,在經過實驗及對照文獻後最後使用0.1 mW的功率進行量測,氧化後硒化銦多出了In2Se3 145的訊號、In2O3 247和302的訊號。除了使用拉曼光譜以外,這邊也使用新竹同步光源的光電子能譜儀再次確認表面氧化物的種類,結果發現在經過氧電漿處理後,表面的氧化物為In2O3及SeOx,綜合拉曼及光電子能譜的實驗結果可得到表面的氧化物種類為In2O3、In2Se3及SeOx。最後比較氧化前後硒化銦場效電晶體的電性結果發現:在經過氧電漿處理後,臨限電壓值增加,代表表面的氧化層會對通道進行p-type 摻雜,也意味著氧化缺陷的陷阱是帶正電的,除此之外也觀察出隨著施加閘極電壓越大及脈衝時間越長,在結束施加脈衝電壓後的單位時間電流變化量會增加,最後藉由實驗結果推測其機制。
  Indium selenide (InSe), as one of most promising two-dimensional (2D) layered materials, has attracted tremendous focus recently. It is considered to be an outstanding material for electronic devices because of its high electron mobility and high on/off ratio. Compared to black phosphorus and gallium selenide, InSe has more ambient stability. Although InSe is not easy to respond with molecules, the adsorbed molecules on InSe field-effect transistors (FETs) would affect the electrical properties of the device. The adsorbed molecules act as a charge trapping mechanism causes instability in FETs. For this study, inductively-coupled plasma was used to produce stable oxygen defect on InSe FET surface. Moreover, the influence of oxidation on transport properties of few-layered InSe FETs was also investigated.
  Raman spectroscopy was used to investigate the chemical bonding after the oxygen plasma treatment. It was found the additional peaks at 145 cm-1 (In2Se3), 247 cm-1 (In2O3) and 302 cm-1 (In2O3). In addition, the experiment results of X-ray photoelectron spectroscopy showed oxidized species are In2O3 and SeOx. Compared to pristine InSe FETs, the electrical results showed that the upshift of threshold voltage denotes an increase of p-type doping which also means that the trap states are positively charged. In addition, bigger pulse gate voltage and longer duration time would lead to a faster variation of current. Lastly, the carrier transport mechanism is proposed.
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖次 v
表次 x
第一章 序論 1
第一節 前言 1
第二節 研究動機 3
第二章 理論背景 4
第一節 硒化銦 4
第二節 二維硒化銦場效電晶體 8
第三節 參數定義及解釋 12
第四節 拉曼原理 14
第五節 掃描式光電子能譜術 18
第六節 氧化後二維材料的電性研究 23
第三章 儀器介紹及元件製程 24
第一節 儀器介紹 24
第二節 元件製程 32
第四章 實驗結果與討論 34
第一節 氧化硒化銦的拉曼光譜 34
第二節 硒化銦光電子能譜 41
第三節 硒化銦場效電晶體電性量測 45
第五章 結論 62
第六章 參考文獻 64
附錄A 68
附錄B 71
附錄C 74
[1] C.V. Kumar, A. Pattammattel, Introduction to Graphene: Chemical and Biochemical Applications, Elsevier, 2017.
[2] K.F. Mak, C. Lee, J. Hone, et al., "Atomically thin MoS 2: a new direct-gap semiconductor." Physical review letters, 105 136805, 2010.
[3] V. Podzorov, M. Gershenson, C. Kloc, et al., "High-mobility field-effect transistors based on transition metal dichalcogenides." Applied Physics Letters, 84 3301-3303, 2004.
[4] A. Segura, F. Pomer, A. Cantarero, et al., "Electron scattering mechanisms in n-type indium selenide." Physical Review B, 29 5708, 1984.
[5] D.A. Bandurin, A.V. Tyurnina, L.Y. Geliang, et al., "High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe." Nature nanotechnology, 12 223, 2017.
[6] H.C. Chang, C.L. Tu, K.I. Lin, et al., "Synthesis of Large‐Area InSe Monolayers by Chemical Vapor Deposition." Small, 14 1802351, 2018.
[7] W. Li, S. Poncé, F. Giustino, "Dimensional crossover in the carrier mobility of 2D semiconductors: the case of InSe." Nano letters, 2019.
[8] W. Feng, J.-B. Wu, X. Li, et al., "Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response." Journal of Materials Chemistry C, 3 7022-7028, 2015.
[9] A. Politano, D. Campi, M. Cattelan, et al., "Indium selenide: an insight into electronic band structure and surface excitations." Scientific reports, 7 3445, 2017.
[10] A. Politano, G. Chiarello, R. Samnakay, et al., "The influence of chemical reactivity of surface defects on ambient-stable InSe-based nanodevices." Nanoscale, 8 8474-8479, 2016.
[11] W. Feng, W. Zheng, X. Chen, et al., "Gate modulation of threshold voltage instability in multilayer InSe field effect transistors." ACS applied materials & interfaces, 7 26691-26695, 2015.
[12] Y. Cai, G. Zhang, Y.-W. Zhang, "Charge transfer and functionalization of monolayer InSe by physisorption of small molecules for gas sensing." The Journal of Physical Chemistry C, 121 10182-10193, 2017.
[13] K. Xiao, A. Carvalho, A.C. Neto, "Defects and oxidation resilience in InSe." Physical Review B, 96 054112, 2017.
[14] L. Shi, Q. Zhou, Y. Zhao, et al., "Oxidation mechanism and protection strategy of ultrathin Indium Selenide: Insight from Theory." The journal of physical chemistry letters, 8 4368-4373, 2017.
[15] O. Balitskii, N. Berchenko, V. Savchyn, et al., "Characteristics of phase formation during indium selenides oxidation." Materials Chemistry and Physics, 65 130-135, 2000.
[16] H. Nan, S. Guo, S. Cai, et al., "Producing air-stable InSe nanosheet through mild oxygen plasma treatment." Semiconductor Science and Technology, 33 074002, 2018.
[17] P.-H. Ho, Y.-R. Chang, Y.-C. Chu, et al., "High-mobility InSe transistors: the role of surface oxides." Acs Nano, 11 7362-7370, 2017.
[18] Y.-R. Chang, P.-H. Ho, C.-Y. Wen, et al., "Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector." ACS Photonics, 4 2930-2936, 2017.
[19] N. Balakrishnan, Z.R. Kudrynskyi, E.F. Smith, et al., "Engineering p–n junctions and bandgap tuning of InSe nanolayers by controlled oxidation." 2D Materials, 4 025043, 2017.
[20] D.J. Late, B. Liu, H.R. Matte, et al., "Hysteresis in single-layer MoS2 field effect transistors." ACS nano, 6 5635-5641, 2012.
[21] W. Feng, X. Zhou, W.Q. Tian, et al., "Performance improvement of multilayer InSe transistors with optimized metal contacts." Physical Chemistry Chemical Physics, 17 3653-3658, 2015.
[22] L. Debbichi, O. Eriksson, S. Lebègue, "Two-dimensional indium selenides compounds: An ab initio study." The journal of physical chemistry letters, 6 3098-3103, 2015.
[23] C. Sun, H. Xiang, B. Xu, et al., "Ab initio study of carrier mobility of few-layer InSe." Applied Physics Express, 9 035203, 2016.
[24] S. Lei, L. Ge, S. Najmaei, et al., "Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe." ACS nano, 8 1263-1272, 2014.
[25] D.K. Sang, H. Wang, M. Qiu, et al., "Two Dimensional β-InSe with Layer-Dependent Properties: Band Alignment, Work Function and Optical Properties." Nanomaterials, 9 82, 2019.
[26] O. Lang, C. Pettenkofer, J.F. Sánchez-Royo, et al., "Thin film growth and band lineup of In 2 O 3 on the layered semiconductor InSe." Journal of applied physics, 86 5687-5691, 1999.
[27] Q. Zhou, Q. Chen, Y. Tong, et al., "Light‐induced ambient degradation of few‐layer black phosphorus: mechanism and protection." Angewandte Chemie International Edition, 55 11437-11441, 2016.
[28] A. Favron, E. Gaufrès, F. Fossard, et al., "Photooxidation and quantum confinement effects in exfoliated black phosphorus." Nature materials, 14 826, 2015.
[29] S. Walia, S. Balendhran, T. Ahmed, et al., "Ambient protection of few‐layer black phosphorus via sequestration of reactive oxygen species." Advanced Materials, 29 1700152, 2017.
[30] M. Chhowalla, D. Jena, H. Zhang, "Two-dimensional semiconductors for transistors." Nature Reviews Materials, 1 16052, 2016.
[31] D.A. Neamen, "Semiconductor physics and devices." 1992.
[32] A. Di Bartolomeo, F. Urban, M. Passacantando, et al., "A WSe 2 vertical field emission transistor." Nanoscale, 11 1538-1548, 2019.
[33] M. Baker, K.A. Hollywood, C. Hughes, Biophotonics: Vibrational Spectroscopic Diagnostics, Morgan & Claypool Publishers, 2016.
[34] J.F. Sánchez-Royo, G. Muñoz-Matutano, M. Brotons-Gisbert, et al., "Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes." Nano Research, 7 1556-1568, 2014.
[35] T. Zheng, Z. Wu, H. Nan, et al., "Layer-number dependent and structural defect related optical properties of InSe." RSC Advances, 7 54964-54968, 2017.
[36] S.K. Chong, S.N.A. Azizan, K.W. Chan, et al., "Structure deformation of indium oxide from nanoparticles into nanostructured polycrystalline films by in situ thermal radiation treatment." Nanoscale research letters, 8 428, 2013.
[37] H. Kim, H. Na, J. Yang, et al., "Synthesis, structure, photoluminescence, and raman spectrum of indium oxide nanowires." Acta Phys. Pol. A, 119 2011.
[38] O.M. Berengue, A.D. Rodrigues, C.J. Dalmaschio, et al., "Structural characterization of indium oxide nanostructures: a Raman analysis." Journal of Physics D: Applied Physics, 43 045401, 2010.
[39] R. Lewandowska, R. Bacewicz, J. Filipowicz, et al., "Raman scattering in α-In2Se3 crystals." Materials research bulletin, 36 2577-2583, 2001.
[40] R. Smart, S. McIntyre, M. Bancroft, et al., "X-ray photoelectron spectroscopy." Department of Physics and Materials Science, City University of Hong Kong, Surface ScienceWestern, UWO, 2011.
[41] R. Browning, N. Kuperman, B. Moon, et al., "Atomic layer growth of InSe and Sb2Se3 layered semiconductors and their heterostructure." Electronics, 6 27, 2017.
[42] W. Zheng, X. Lu, W. Wang, et al., "Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection." Journal of colloid and interface science, 338 366-370, 2009.
[43] I. Miyake, T. Tanpo, C. Tatsuyama, "XPS Study on the Oxidation of InSe." Japanese Journal of Applied Physics, 23 172, 1984.
[44] K.M. Beck, W.R. Wiley, E. Venkatasubramanian, et al., "Vacancies ordered in screw form (VOSF) and layered indium selenide thin film deposition by laser back ablation." Applied Surface Science, 255 9707-9711, 2009.
[45] Z.M. Detweiler, S.M. Wulfsberg, M.G. Frith, et al., "The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants." Surface Science, 648 188-195, 2016.
[46] J. Jadwiszczak, C. O’Callaghan, Y. Zhou, et al., "Oxide-mediated recovery of field-effect mobility in plasma-treated MoS2." Science advances, 4 eaao5031, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊