|
[1] C.V. Kumar, A. Pattammattel, Introduction to Graphene: Chemical and Biochemical Applications, Elsevier, 2017. [2] K.F. Mak, C. Lee, J. Hone, et al., "Atomically thin MoS 2: a new direct-gap semiconductor." Physical review letters, 105 136805, 2010. [3] V. Podzorov, M. Gershenson, C. Kloc, et al., "High-mobility field-effect transistors based on transition metal dichalcogenides." Applied Physics Letters, 84 3301-3303, 2004. [4] A. Segura, F. Pomer, A. Cantarero, et al., "Electron scattering mechanisms in n-type indium selenide." Physical Review B, 29 5708, 1984. [5] D.A. Bandurin, A.V. Tyurnina, L.Y. Geliang, et al., "High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe." Nature nanotechnology, 12 223, 2017. [6] H.C. Chang, C.L. Tu, K.I. Lin, et al., "Synthesis of Large‐Area InSe Monolayers by Chemical Vapor Deposition." Small, 14 1802351, 2018. [7] W. Li, S. Poncé, F. Giustino, "Dimensional crossover in the carrier mobility of 2D semiconductors: the case of InSe." Nano letters, 2019. [8] W. Feng, J.-B. Wu, X. Li, et al., "Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response." Journal of Materials Chemistry C, 3 7022-7028, 2015. [9] A. Politano, D. Campi, M. Cattelan, et al., "Indium selenide: an insight into electronic band structure and surface excitations." Scientific reports, 7 3445, 2017. [10] A. Politano, G. Chiarello, R. Samnakay, et al., "The influence of chemical reactivity of surface defects on ambient-stable InSe-based nanodevices." Nanoscale, 8 8474-8479, 2016. [11] W. Feng, W. Zheng, X. Chen, et al., "Gate modulation of threshold voltage instability in multilayer InSe field effect transistors." ACS applied materials & interfaces, 7 26691-26695, 2015. [12] Y. Cai, G. Zhang, Y.-W. Zhang, "Charge transfer and functionalization of monolayer InSe by physisorption of small molecules for gas sensing." The Journal of Physical Chemistry C, 121 10182-10193, 2017. [13] K. Xiao, A. Carvalho, A.C. Neto, "Defects and oxidation resilience in InSe." Physical Review B, 96 054112, 2017. [14] L. Shi, Q. Zhou, Y. Zhao, et al., "Oxidation mechanism and protection strategy of ultrathin Indium Selenide: Insight from Theory." The journal of physical chemistry letters, 8 4368-4373, 2017. [15] O. Balitskii, N. Berchenko, V. Savchyn, et al., "Characteristics of phase formation during indium selenides oxidation." Materials Chemistry and Physics, 65 130-135, 2000. [16] H. Nan, S. Guo, S. Cai, et al., "Producing air-stable InSe nanosheet through mild oxygen plasma treatment." Semiconductor Science and Technology, 33 074002, 2018. [17] P.-H. Ho, Y.-R. Chang, Y.-C. Chu, et al., "High-mobility InSe transistors: the role of surface oxides." Acs Nano, 11 7362-7370, 2017. [18] Y.-R. Chang, P.-H. Ho, C.-Y. Wen, et al., "Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector." ACS Photonics, 4 2930-2936, 2017. [19] N. Balakrishnan, Z.R. Kudrynskyi, E.F. Smith, et al., "Engineering p–n junctions and bandgap tuning of InSe nanolayers by controlled oxidation." 2D Materials, 4 025043, 2017. [20] D.J. Late, B. Liu, H.R. Matte, et al., "Hysteresis in single-layer MoS2 field effect transistors." ACS nano, 6 5635-5641, 2012. [21] W. Feng, X. Zhou, W.Q. Tian, et al., "Performance improvement of multilayer InSe transistors with optimized metal contacts." Physical Chemistry Chemical Physics, 17 3653-3658, 2015. [22] L. Debbichi, O. Eriksson, S. Lebègue, "Two-dimensional indium selenides compounds: An ab initio study." The journal of physical chemistry letters, 6 3098-3103, 2015. [23] C. Sun, H. Xiang, B. Xu, et al., "Ab initio study of carrier mobility of few-layer InSe." Applied Physics Express, 9 035203, 2016. [24] S. Lei, L. Ge, S. Najmaei, et al., "Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe." ACS nano, 8 1263-1272, 2014. [25] D.K. Sang, H. Wang, M. Qiu, et al., "Two Dimensional β-InSe with Layer-Dependent Properties: Band Alignment, Work Function and Optical Properties." Nanomaterials, 9 82, 2019. [26] O. Lang, C. Pettenkofer, J.F. Sánchez-Royo, et al., "Thin film growth and band lineup of In 2 O 3 on the layered semiconductor InSe." Journal of applied physics, 86 5687-5691, 1999. [27] Q. Zhou, Q. Chen, Y. Tong, et al., "Light‐induced ambient degradation of few‐layer black phosphorus: mechanism and protection." Angewandte Chemie International Edition, 55 11437-11441, 2016. [28] A. Favron, E. Gaufrès, F. Fossard, et al., "Photooxidation and quantum confinement effects in exfoliated black phosphorus." Nature materials, 14 826, 2015. [29] S. Walia, S. Balendhran, T. Ahmed, et al., "Ambient protection of few‐layer black phosphorus via sequestration of reactive oxygen species." Advanced Materials, 29 1700152, 2017. [30] M. Chhowalla, D. Jena, H. Zhang, "Two-dimensional semiconductors for transistors." Nature Reviews Materials, 1 16052, 2016. [31] D.A. Neamen, "Semiconductor physics and devices." 1992. [32] A. Di Bartolomeo, F. Urban, M. Passacantando, et al., "A WSe 2 vertical field emission transistor." Nanoscale, 11 1538-1548, 2019. [33] M. Baker, K.A. Hollywood, C. Hughes, Biophotonics: Vibrational Spectroscopic Diagnostics, Morgan & Claypool Publishers, 2016. [34] J.F. Sánchez-Royo, G. Muñoz-Matutano, M. Brotons-Gisbert, et al., "Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes." Nano Research, 7 1556-1568, 2014. [35] T. Zheng, Z. Wu, H. Nan, et al., "Layer-number dependent and structural defect related optical properties of InSe." RSC Advances, 7 54964-54968, 2017. [36] S.K. Chong, S.N.A. Azizan, K.W. Chan, et al., "Structure deformation of indium oxide from nanoparticles into nanostructured polycrystalline films by in situ thermal radiation treatment." Nanoscale research letters, 8 428, 2013. [37] H. Kim, H. Na, J. Yang, et al., "Synthesis, structure, photoluminescence, and raman spectrum of indium oxide nanowires." Acta Phys. Pol. A, 119 2011. [38] O.M. Berengue, A.D. Rodrigues, C.J. Dalmaschio, et al., "Structural characterization of indium oxide nanostructures: a Raman analysis." Journal of Physics D: Applied Physics, 43 045401, 2010. [39] R. Lewandowska, R. Bacewicz, J. Filipowicz, et al., "Raman scattering in α-In2Se3 crystals." Materials research bulletin, 36 2577-2583, 2001. [40] R. Smart, S. McIntyre, M. Bancroft, et al., "X-ray photoelectron spectroscopy." Department of Physics and Materials Science, City University of Hong Kong, Surface ScienceWestern, UWO, 2011. [41] R. Browning, N. Kuperman, B. Moon, et al., "Atomic layer growth of InSe and Sb2Se3 layered semiconductors and their heterostructure." Electronics, 6 27, 2017. [42] W. Zheng, X. Lu, W. Wang, et al., "Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection." Journal of colloid and interface science, 338 366-370, 2009. [43] I. Miyake, T. Tanpo, C. Tatsuyama, "XPS Study on the Oxidation of InSe." Japanese Journal of Applied Physics, 23 172, 1984. [44] K.M. Beck, W.R. Wiley, E. Venkatasubramanian, et al., "Vacancies ordered in screw form (VOSF) and layered indium selenide thin film deposition by laser back ablation." Applied Surface Science, 255 9707-9711, 2009. [45] Z.M. Detweiler, S.M. Wulfsberg, M.G. Frith, et al., "The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants." Surface Science, 648 188-195, 2016. [46] J. Jadwiszczak, C. O’Callaghan, Y. Zhou, et al., "Oxide-mediated recovery of field-effect mobility in plasma-treated MoS2." Science advances, 4 eaao5031, 2018.
|