(3.215.183.251) 您好!臺灣時間:2021/04/22 21:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃亭亭
研究生(外文):Ting-Ting Huang
論文名稱:離岸風機負壓沉箱基礎安裝吸力數值研究
論文名稱(外文):Numerical study on installation pressure of suction caisson foundation for offshore wind turbine
指導教授:陳邦富
指導教授(外文):Bang-Fuh Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
中文關鍵詞:離岸風機負壓沉箱兩相流有限差分法吸力誘導應力
外文關鍵詞:suction induced stressfinite-difference methodsOffshore wind turbinesuction bucketsolid-fluid mixturesuction caisson
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討負壓沉箱施作過程對海洋底質動態反應之影響,其理論來自於海洋運動方程式與多孔介質淤沙環境之控制方程式,並由有限差分法求得海洋底質土體之超額孔隙水壓、固液兩相之速度分量、海洋底質中固體水平與垂直方向之正向應力與剪應力的數值解。
在基準驗證後測試不同的邊界條件產生之結果並提出了最合理的邊界條件。假設幾個沉貫深度並利用兩個不同的吸入壓力導致之應力來研究整體橫向阻力和可能發生管湧的潛力。
隨著沉貫深度的增加,沉箱壁內正規化超額孔隙水壓梯度的分佈與牆壁對齊,同時沉箱尖端的超額孔隙水壓力變小,而正應力和剪應力則隨著沉貫深度的增加而增加,且最大應力發生在沉箱尖端。
吸力引起的應力將導致沉箱內的摩擦應力減小,而沉箱外側則增加。然而有效土應力的減量最多是在沉貫深度到達2.5米且承受臨界吸力時,位於沉箱內側尖端的位置,此處管湧潛力為31.52%。
The objective of this study is the mechanical behavior of suction bucket caisson under loadings. The formulations are derived based on the fundamental theories of ocean hydrodynamic and flow in porous medium and they are solved by the finite-difference methods. A benchmark validation was made before further simulation cases. Several penetration depths were assumed and two different suction pressures were given. Different boundary conditions were tested and the most reasonable one was suggested.
Suction induced stresses in response to various suction pressures and penetration depths were studied. The overall lateral resistance and possible piping potential were investigated.
As the penetration depth increases, the distribution of the normalize excess water pressure gradient inside the caisson wall is aligned with the wall and the excess water pressure at the caisson tip become smaller, whereas the normal stress and shear stress increase as does the penetration depth and the maximums stress is on the caisson tips.
The suction induced stress will lead the friction stress within the caisson decrease, and the outer parts will increase. However, the maximum decrement of the effective soil stress at the inner corner of the caisson tip and the piping potential is 31.52 % in full penetration depth.
論文審定書 i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURE viii
LIST OF TABLE xiv
NOMENCLATURE xv
INTRODUCTION 1
1.1 Background 1
1.2 Offshore wind turbine development 2
1.2.1 Denmark 2
1.2.2 UK 2
1.2.3 Germany 3
1.3 Offshore Wind Power 4
1.3.1 Offshore wind power system 4
1.3.2 Types of Foundations 5
1.4 Summary of chapter 9
LITERATURE REVIEW 11
2.1 Development of Suction Caissons 11
2.2 Analysis of Suction Caissons 11
2.3 Installation analysis 14
THEORETICAL AND NUMERICAL METHODS 18
3.1 Governing equations 18
3.1.1 Seawater 18
3.1.2 Sediment 19
3.1.3 Boundary conditions 21
3.1.4 Initial conditions 22
3.2 Numerical Methods 22
3.2.1 Finite difference numerical solution 23
3.2.2 Grid system 23
3.2.3 Pressure wave equation processing 26
3.2.4 Pressure wave equation boundary processing 27
3.2.5 Velocity field of sediment 29
3.2.6 Stress field and porosity of sediment 31
3.3 Computational process and Convergence Conditions 32
STABILITY ANALYSIS AND THE BENCHMARK TESTS 34
4.1 Mesh and domain size 37
4.1.1 Domain parameter 38
4.1.2 Domain parameter 38
4.1.3 The clustering parameter 39
4.1.4 Number of the mesh 40
4.2 Benchmark problem 41
4.2.1 Excess pore pressure 42
4.2.2 The suction induced stress 46
4.2.3 Velocity 50
INFLUENCE OF BOUNDARY CONDITIONS 54
5.1 Outside of boundary 54
5.2 B.C. of the interface between seawater and sediment 56
5.3 B.C. of the interface between sediment and bottom 58
5.4 Summary of Chapter 61
THE OVERALL SOIL RESISTANCE 68
6.1 Friction stress in self-weight penetration depth 70
6.1.1 Passive-Active state 77
6.1.2 Active-Passive state 78
6.1.3 The rest state 79
6.2 Friction stress in full penetration depth 80
6.2.1 Passive-Active state 86
6.2.2 Active-Passive state 87
6.2.3 The rest state 87
6.3 The vertical Bearing stress 88
6.3.1 The piping potential on the whole domain 88
6.3.2 The piping potential at the caisson tip 90
6.4 Summary of chapter 93
CONCLUDING REMARKS 96
7.1 Conclusions 96
7.2 Recommendations for the future research 97
REFERENCES 99
[1] Z.J. Westgate, J.T. DeJong, Geotechnical considerations for offshore wind turbines, in:
Report for MTC OTC Project, 2005.
[2] LI Da-Yong, WU Yu-qi, ZHANG Yu-Kun, GAO Yu-Feng“ Determination of suction range for penetration of suction caissons in sand.” Rock and Soil Mechanics Vol.38 No. 4,2017.
[3] DNV GL AS, Offshore Standard DNV-OS-J101 Design of Offshore Wind Turbine
Structures, 2014.
[4] Det Norske Veritas (DNV), Offshore Standard DNV-OS-E301 Position Mooring,
2010, Høvik.
[5] “HVDC Connection Of Offshore Wind Power Plants - EE Publishers”. EE Publishers, 2018.
[6] “Suction Bucket Or Caisson Foundations - 4C Offshore”. 4Coffshore.Com, 2018.
[7] Hoffmann, Klaus A, and Steve T Chiang. Computational Fluid Dynamics For Engineers.
Engineering Education System, 1995.
[8] G. T. Houlsby, B. W. Byrne, “Design procedures for installation of suction caissons in clay and other materials” Proceedings of the Institution of Civil Engineers, 2005.
[9] G. T. Houlsby, B. W. Byrne, “Design procedures for installation of suction caissons in the sand.” Proceedings of the Institution of Civil Engineers, 2005.
[10] Ouahid Harireche, Moura Mehravar, Amir M. Alani, “Soil conditions and bounds to
suction during the installation of caisson foundations in sand” Ocean Engineering 88 (2014), 164–173.
[11] Ardus, D.A., Clare, D., Hill, A., Hobbs, R., Jardine, R.J., Squire, J.M. (Eds.), Offshore
Site Investigation and Foundation Behaviour, 1992.
[12] M. Achmus, C.T. Akdag, K. Thieken. “Load-bearing Behavior of Suction Bucket
Foundations in Sand,” Appl Ocean Res, 2013, 157–165.
[13] M. Achmus, M. Thieken, Klaus Thieken. “Numerical Simulation of the Tensile
Resistance of Suction Buckets in Sand” Journal of Ocean and Wind Energy (ISSN
2310-3604), November 2014, pp. 231–239.
[14] Villalobos FA, Byrne BW, Houlsby GT. “Moment loading of caissons installed in
saturated sand.” Proceedings of international symposium on frontiers in Geotechnics,
ISFOG. University of Western; 2005, pp. 411–16.
[15] Huang, Chen-Feh. "Sediment Effect on Responses Of Coastal Structures". National
Sun Yat-Sen University, 1997.
[16] Atkin, R. J. and Craine, R, E., “Continuum Theories of Mixture: Applications,” J.Inst.
Maths Appls, vol 17, pp. 153-207, 1976.
[17] Bang-Fuh Chen and Tin-Kan Hung, “Dynamic Pressure of Water and Sediment on
Rigid Dam” Journal of Engineering Mechanics, vol. 119, no.7, pp. 1411-1433, July,
1993.
[18] B. Loret and J. H. Prevost, “Dynamic Strain Localization in Fluid-Saturated Porous
Media” Journal of Engineering Mechanics, vol. 117, no.4, April, 1991.
[19] Jean H. Prevost, “Wave Propagation in Fluid-Saturated Porous Media: An Efficient
Finite Element Procedure, ” Soil Dynamics and Earthquake Engineering, vol. 4, no.4,
pp.183-202, 1985.
[20] C.A.J. Fletcher, Computational Techniques for Fluid Dynamic, Springer-Verlag, vol.1,
1990.
[21] TJELTA T. I. Geotechnical aspects of bucket foundations replacing piles for the Europipe 16/11-E Jacket. Proceedings of the Offshore Technology Conference, Houston, TX, 1994. OTC, Richardson, TX, Paper OTC 7379.
[22] TJELTA T. I. “Suction piles: their position and application today”. Proceedings 11th International Symposium on Offshore and Polar Engineering, Stavangar, 2001. ISOPE, Mountain View, CA, Vol. 2, pp. 1–6.
[23] "Frederikshavn - 4C Offshore". 4Coffshore.Com, 2018, Accessed 3 Oct 2018.
[24] American Petroleum Institute (API). Design and Analysis of Station keeping Systems for Floating Structures, API Recommended Practice 2SK, 3rd ed. Washington, D.C.: API Publishing Services.
[25] J.H. Zhang, Z.Y.Chen, F.Li, “Three dimensional limit analysis of suction bucket foundations” Ocean Engineering 37(2010), 790–799.
[26] Le Chi Hung, Sung Ryul Kim, “Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay” Ocean Engineering 52 (2012), 75–82.
[27] Le Chi Hung, Sung Ryul Kim, “Evaluation of combined horizontal-moment bearing capacities of tripod bucket foundations in undrained clay” Ocean Engineering 85 (2014), 100–109.
[28] Puyang Zhang, , Ruiqi Hu, Hongyan Ding, Yaohua Guo, Kangping Xiong, “Comparative analysis of seepage field characteristics in bucket foundation
with and without compartments” Ocean Engineering 143 (2017), 34–49.
[28] Jeong-Seon Park, Duhee Park, Jin-KwonYoo, “Vertical bearing capacity of bucket foundations in sand” Ocean Engineering 121(2016), 453–461
[29] Jeong-Seon Park, Duhee Park, “Vertical bearing capacity of bucket foundation in sand overlying clay” Ocean Engineering 134 (2017), 62–76.
[30] Yun, G., Bransby, M. F., “The undrained vertical bearing capacity of skirted
foundations”. Soils Found .3(2007), 493–505.
[31] Bransby,M.F.,Yun,G.J., “The undrained capacity of skirted trip foundations
under combined loading”.Geotechnique 59(2),115–125, 2009.
[32] Meimei Liu, Jijian Lian, Min Yang, “Experimental and numerical studies on lateral bearing capacity of bucket foundation in saturated sand” Ocean Engineering 144 (2017), 14–20.
[33] Dayong Li, Yukun Zhang, Lingyun Feng, Yufeng Gao, “Capacity of modified suction caissons in marines and under static horizontal loading” Ocean Engineering 102(2015), 1–16.
[34] Ying Li, Shugeng Yan ,Xing Zou, “Advanced concept design and numerical study of suction bucket foundation in deep ocean” Ocean Engineering 54(2012), 142–149.
[35] Ibsen, L. B., and Thilsted, C. (2010). “Numerical study of piping limits for suction installation of offshore skirted foundations an anchors in layered sand,” Frontiers in offshore geotechnics II, pp. 421-426.
[36] Villalobos, F.A., Byrne, B.W. & Houlsby, G.T), “An experimental study of the drained capacity of suction caisson foundations under monotonic loading for offshore applications”, Soils and Foundations 49 (2009), 477-488.
[37] BYRNE B. W. Investigation of Suction Caissons in Dense Sand. DPhil thesis, Oxford University, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔