( 您好!臺灣時間:2021/04/21 07:53
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Bo-Jyun Huang
論文名稱(外文):An Adaptive ABS Management Mechanism with Cell-Overlapping and Packet-Delay Consideration in LTE-A HetNets
指導教授(外文):You-Chiun Wang
外文關鍵詞:cell overlapalmost blank subframepacket delaylong term evolution-advancedheterogeneous networkenhanced inter-cell interference coordination
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著手機的普及化與無線技術的發展,人們傳輸的內容不再純粹只是文字或語音,還涉及多媒體串流和社群網路的應用,為了滿足頻寬的需求,營運商大量佈署小細胞(small cell)來降低網路負擔,但細胞間的干擾也隨之增加;因此,3GPP組織於LTE-A標準中提出「增強型細胞間干擾消除技術」(Enhanced inter-cell interference coordination,簡稱為eICIC),藉由使用「幾乎空白子訊框」(Almost blank subframe,簡稱為ABS),讓macrocell基地台可以僅傳送低功率的控制訊號,來改善small cell訊號干擾的問題,但相對來說,macrocell中的手機於ABS期間無法接收資訊,可想而知,倘若ABS所使用的比例(即ABS ratio)沒有善加設定,將可能大幅降低系統效能,因此許多文獻針對ABS ratio做調整,然而,它們多半僅考慮單一macrocell的場景,現實應用上,macrocell彼此間會有重疊區域,這將對ABS的設定造成衝擊,此外,多數方法也未考量ABS的排程(Scheduling)對封包延遲的影響,這可能導致封包遺失率大幅上升。
基於前述動機,與以往方法假設單一macrocell環境所不同,本論文綜合考量細胞重疊區域的干擾與封包時效性之議題,提出AAM (Adaptive ABS Management)方法,其考量兩個macrocell可能存在訊號範圍的重疊,且該範圍中亦可能存在picocell於此環境下,AAM讓 macrocell各別依據自身的UE狀況以及佇列中資料的情況,計算合適的ABS ratio,之後再根據封包佇列中的緊急資料量來規劃ABS 的位置,藉由緊急資料量的多寡來決定ABS的先後順序,以避免macrocell的效能受到嚴重的影響;模擬結果顯示,AAM與現有方法相較之下,能明顯改善網路整體的吞吐量,同時有效減少封包的遺失率。
With the popularization of mobile phones and the development of wireless technologies, people prefer using multimedia streaming and social networking applications, instead of just voice and short messages. To meet the growing demand of bandwidth, operators have deployed a large number of small cells to reduce the network load, but inter-cell interference also increases. Therefore, the 3GPP organization proposed the technology of "enhanced inter-cell interference coordination" (eICIC) in the LTE-A standard. By using almost blank subframe (ABS), a macrocell base station transmits merely low-powered control signals to reduce the interference to devices in small cells. However, the devices used in the macrocell cannot receive their data during an ABS. Obviously, the ABS ratio (i.e., the ratio of ABSs to total subframes in a period) decides system performance. Thus, many studies are dedicated to calculate the ABS ratio. Nevertheless, most of them consider the scenario where each macrocell is stand-alone. In practice, macrocells may have overlapped areas with each other, which has impact on the decision of the ABS ratio. In addition, they do not consider the effect of ABS scheduling on packet delay, which may increase packet loss of devices.
Based on the above motivation, we aim at the scenario where some picocells are located in the overlapping area of two adjacent macrocells, and develop an adaptive ABS management (AAM) to decide not only the ABS ratio but also ABS scheduling. AAM allows each macrocell base station to calculate its ABS ratio based on multiple factors such as traffic demands, cell capacity, and urgent data. Then, two overlapping macrocells will negotiate with each other to schedule their locations of ABSs, with the objective of reducing packet dropping. Through simulations, we show that our AAM algorithm can improve network throughput and reduce packet loss, as compared with other methods.
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 viii
表次 ix
第一章 導論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文貢獻與章節架構 4
第二章 相關背景與技術 5
2.1 CRE和eICIC技術介紹 5
2.2 LTE-A頻譜資源 7
2.3 LTE-A服務品質分級 12
第三章 相關文獻與問題定義 14
3.1 相關文獻 14
3.2 網路模型與問題定義 17
第四章 研究方法 18
4.1 演算法流程 18
4.2 步驟一:計算UE的SINR值 21
4.3 步驟二:分析網路狀況並推算可達之資料量 22
4.4 步驟三:分析UE佇列之狀態 25
4.5 步驟四:計算適合的ABS比例 28
4.6 步驟五:根據資料情形安排ABS位置 31
4.7 AAM演算法設計原由 33
第五章 實驗結果分析與討論 34
5.1 模擬環境與參數設定 34
5.2 吞吐量之研究 37
5.2.1 整體吞吐量 37
5.2.2 Macrocell總吞吐量 39
5.2.3 Picocell總吞吐量 41
5.2.4 Picocell 各場景之吞吐量 43
5.3 封包遺失率之研究 47
5.3.1 整體封包遺失率 47
5.3.2 Macrocell平均封包遺失率 49
5.3.2 Picocell平均封包遺失率 50
5.4 步驟五之效能分析 52
第六章 結論與未來研究方向 53
參考文獻 54
[1]ITU Radio communication Sector, “Background on IMT-Advanced,” Technical Report, IMT-ADV/1, 2008.
[2]Freescale Semiconductor, “Long term evolution protocol overview,” White Paper, 2008. https://www.nxp.com/docs/en/white-paper/LTEPTCLOVWWP.pdf
[3]ETSI “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN),” 3GPP TS 25.913 V9.0.0, 2009.
[4]S. Kanchi, S. Sandilya, D. Bhosale, A. Pitkar, and M. Gondhalekar, “Overview of LTE-A technology,” IEEE Global High Tech Congress on Electronics, pp.195-200, 2013.
[5]A. Khandekar, N. Bhushan, J. Tingfang,and V. Vanghi, “LTE-advanced: heterogeneous networks,” European Wireless Conference, pp.978-982, 2010.
[6]J. Sangiamwong, Y. Saito, N. Miki, T. Abe,and S. Nagata,Y. Okumura, “Investigation on cell selection methods associated with inter-cell interference coordination in heterogeneous networks for LTE-advanced downlink,” European Wireless conference, pp. 27-29, 2011.
[7]J. Oh and Y. Han, “Cell selection for range expansion with almost blank subframe in heterogeneous networks,” IEEE International Symposium on Personal Indoor and Mobile Radio Communication,pp.653-657, 2012.
[8]C. Mehlfuhrer, M. Wrulich, J. C. Ikuno, D. Bosanska ,and M. Rupp,” Simulating the long term evolution physical layer,” European Signal Processing Conference, pp. 1471-1478, 2009
[9]ETSI, “Group radio access network physical layer procedures (release 13),” 3GPP TS 36.213 V13.0.1, 2016.
[10]ETSI, “Policy and charging control architecture release 13,” 3GPP TS 23.203 V13.10, 2016.
[11]Y. Wang and K. I. Pedersen, “Time and power domain interference management for LTE networks with macro-cells and HeNBs,” IEEE Vehicular Technology Conference, pp. 1-6, 2011.
[12]A. Barbieri and A. Damnjanovic, “LTE femtocells: system design and performance analysis,” IEEE Journal on Selected Areas in Communications, IEEE Journal on, vol.30, no.3, pp.586-594, 2012.
[13]M. Al-Rawi, M. Simsek, and R. Jantti, “Utility-based resource allocation in LTE-advanced heterogeneous networks,” IEEE International Wireless Communications and Mobile Computing Conference, pp.826-830, 2013.
[14]S. N. S. Kshatriya, S. Kaimalettu, S. R. Yerrapareddy, K. Milleth, and N. Akhtar, “On interference management based on subframe blanking in heterogeneous LTE networks,” International Conference on Communication Systems and Networks, pp.1-7, 2013.
[15]S. Vasudevan, R. N. Pupala and K. Sivanesan, “Dynamic eICIC—a proactive strategy for improving spectral efficiencies of heterogeneous LTE cellular networks by leveraging user mobility and traffic dynamics,” IEEE Transactions on Wireless Communications, vol. 12, no.10, pp.4956-4969, 2013.
[16]A. Argyriou, D. Kosmanos, and L. Tassiulas, “Joint time-domain resource partitioning, rate allocation, and video quality adaptation in heterogeneous cellular networks,” IEEE Transactions on Multimedia, vol.17, no.5, pp.736-745, 2015
[17]S. H. Lu, W. P. Lai, and L. C. Wang, “Time-domain coordination for inter-cell interference reduction in LTE hierarchical cellular systems,” International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, pp. 51-55, 2014.
[18]R. Xue, M. Zhang, H. Yu, H. Luo, and X. Gan “Dynamic time-domain resource allocation in heterogeneous small cell networks based on bursty traffic,” IEEE/CIC International Conference on Communications in China, pp. 621-626, 2014.
[19]W. Lu, Y. Li, Q. Zhou, and S. Chen, “Performance analysis of cell selection solution in macro-pico heterogeneous networks,” IEEE International Conference on Computer and Communications, pp. 14-17, 2016.
[20]Z. Liu and Y. Ji, “Intercell interference coordination under data rate requirement constraint in LTE-advanced heterogeneous networks,” IEEE Vehicular Technology Conference, pp.1-5, 2014.
[21]A. Bedekar and R. Agrawal, “Optimal muting and load balancing for eICIC,” International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pp. 280-287, 2013.
[22]J. Pang, J. Wang, D. Wang, G. Shen, Q. Jiang, and J. Liu, “Optimized time-domain resource partitioning for enhanced inter-cell interference coordination in heterogeneous networks,” IEEE Wireless Communications and Networking Conference, pp.1613-1617, 2012.
[23]Y. C. Wang and S. T. Chen, “Delay-aware ABS adjustment to support QoS for real-time traffic in LTE-A HetNet,” IEEE Wireless Communications Letters, pp. 590-593, 2017.
[24]R. Giuliano and F. Mazzenga, “Exponential effective SINR approximations for OFDM/OFDMA-based cellular system planning,” IEEE Transactions on Wireless Communications, vol. 8, no. 9, pp. 4434-4439, 2009.
[25]L. Gao, H. Tian, J. Zhang, and M. Wang “A distributed dynamic ABS ratio setting scheme for macro-femto heterogeneous networks,” IEEE International Conference on Communications Workshops, pp. 1221-1225, 2013.
[26]G. Piro, L. A. Grieco, G. Boggia, R. Fortuna, and P. Camarada, “Two-level downlink scheduling for real-time multimedia services in LTE networks,” IEEE Transactions on Multimedia, vol. 13, no. 5, pp. 1052-1065, 2011.
[27]G. Piro, L. A. Grieco, G. Boggia, R. Fortuna, and P. Camarada, “Simulating LTE cellular systems: an open-source framework,” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 498-513, 2011.
[28]M. Andrews, K. Kumaran, K.Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar, “Providing quality of service over a shared wireless link,” IEEE Communications Magazine, vol. 39, no. 2, pp. 150-154, Feb. 2001.
電子全文 電子全文(網際網路公開日期:20230829)
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔