跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/03 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳佑任
研究生(外文):You-ren Chen
論文名稱:LTE-A環境下基於感知無線電技術之電視白頻段協調機制
論文名稱(外文):TV White Space Coordination Mechanism by Cognitive Radio for LTE-A
指導教授:賴威光賴威光引用關係
指導教授(外文):Wei-Kuang Lai
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:長期演進技術(Long Term Evolution)電視白頻段(TV White SpaceTVWS)頻譜感測(Spectrum Sensing)頻譜協調(Spectrum Coordination)免執照頻譜感知無線電網路(Cognitive Radio NetworkCRN)
外文關鍵詞:Spectrum CoordinationUnlicensed BandCognitive Radio Network(CRN)LTETVWSSpectrum Sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
目前6 GHz以下的頻譜資源中多數雖已分配用途,但部分頻譜資源卻因閒置未使用導致頻譜使用效率不彰。感知無線電技術是用來提升頻譜使用效率的一種方式,透過週期性地頻譜感測找出閒置頻譜,在避免干擾既有使用者的前提下使用閒置頻譜,除提升頻譜使用效率外,亦可緩解網路頻寬不足的問題。電視白頻段為感知無線電網路所運行的頻段之一,其主要為無線電視數位化後所空出的閒置頻譜資源、因地理位置差異而未使用的頻譜資源或電視頻道間的保護頻段。
在過往文獻中對於電視白頻段的研究如IEEE 802.22已有訂定相關使用規範,但在3GPP中尚未有相關標準釋出,因此在過往研究中多探討電視白頻段應用於LTE的可能性。在本篇論文中,除了考慮傳輸範圍大的電視訊號發射站之外,也一併考慮傳輸範圍小但動態出現在網路環境中的電視白頻段裝置,盡可能減少對既有使用者的干擾。然而,頻譜感測結果可能出現偏差,讓基地台誤判電視白頻段可用而分配資源給使用者。因此本篇論文透過合作式感測並設置較嚴格的感測門檻,雖犧牲部分頻譜使用效益但也降低影響既有使用者的可能性。
在資源分配方面,本篇論文提出一個基於感知無線電技術的電視白頻段協調機制,透過尋找多層鄰居基地台與共同候選電視白頻段,讓協調者分配鄰近基地台互相正交的電視白頻段,進一步降低對既有使用者及LTE使用者的干擾。最後,基地台利用原LTE頻譜及協調後的可用電視白頻段,以鏈路權重值大小依序滿足使用者的服務品質需求,在原有LTE的基礎上獲得使用電視白頻段的效益,提升整體網路效能。
Spectrum resources below 6 GHz are almost fully allocated nowadays, but some of them are underutilized. Cognitive radio (CR) is one of the way to promote spectrum efficiency. It finds out the idle spectrum resources by periodically sensing the spectrum and uses them on the premise of avoiding interference to incumbent users. TV White Space (TVWS) is one operating bands of cognitive radio network, it is mainly the idle spectrum resources due to digital switchover, geographic region difference such as rural areas and major urban areas or the guard bands between TV channels.
Previous research had determined the rule of using TVWS such as transmission power, ability to communicate with the spectrum database, detection sensibility, etc. IEEE 802.22, for example, is the first standard developed using CR techniques. Some papers about 3GPP LTE discussed the possibility of using TVWS. In this paper, we consider both TV transmitters whose transmission range are large and TVWS devices which will dynamically appear and their transmission range are small. To avoid interference to incumbent users, we use cooperative spectrum sensing technique and set the strict sensing threshold.
To further reduce the interference to incumbent users and LTE users, we propose a TVWS coordination mechanism by cognitive radio to let the coordinator allocate orthogonal TVWS to adjacent base stations through multi-hop neighbor base stations and common candidate TVWS. Finally, we allocate LTE spectrum and available TVWS to users by link weight. The system throughput can be improved and the interference constraint on incumbent users is satisfied.
學位論文審定書 i
論文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
1 第一章 導論 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 5
2 第二章 相關背景與研究 6
2.1 感知無線電網路(CRN)介紹 6
2.2 感知無線電網路相關技術介紹 8
2.2.1 頻譜感測 8
2.2.2 通道存取方式 9
2.2.3 共同控制通道(common control channel, CCC) 10
2.3 免執照頻譜介紹 12
2.3.1 電視白頻段 12
2.3.2 ISM頻段 13
2.4 各國發展狀況 14
2.5 相關研究 16
3 第三章 研究方法 18
3.1 系統架構 18
3.1.1 問題定義 20
3.1.2 方法架構與流程 22
3.2 使用者頻譜感測機制 24
3.3 基地台候選頻譜決策機制 27
3.4 多基地台頻譜協調機制 29
3.4.1 全域候選資源區塊整合 31
3.4.2 多基地台共同候選資源區塊映射 33
3.4.3 正交可用資源區塊分配 38
3.5 基地台依鏈路權重之資源分配機制 44
4 第四章 模擬與效能分析 46
5 第五章 結論 54
參考文獻 55
[1]M. Shih, K. D. Huang, C. Yeh, and H. Wei, "To Wait or To Pay: A Game Theoretic Mechanism for Low-Cost M2M and Mission-Critical M2M," IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7314-7328, 2016.
[2]F. Liu, E. Bala, E. Erkip, M. C. Beluri, and R. Yang, "Small-Cell Traffic Balancing Over Licensed and Unlicensed Bands," IEEE Transactions on Vehicular Technology, vol. 64, no. 12, pp. 5850-5865, 2015.
[3]H. Ko, J. Lee, and S. Pack, "A Fair Listen-Before-Talk Algorithm for Coexistence of LTE-U and WLAN," IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 10116-10120, 2016.
[4]G. Han, L. Liu, S. Chan, R. Yu, and Y. Yang, "HySense: A Hybrid Mobile CrowdSensing Framework for Sensing Opportunities Compensation under Dynamic Coverage Constraint," IEEE Communications Magazine, vol. 55, no. 3, pp. 93-99, 2017.
[5]R. Paul and Y. Choi, "Adaptive Rendezvous for Heterogeneous Channel Environments in Cognitive Radio Networks," IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7753-7765, 2016.
[6]C. R. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. J. Shellhammer, and W. Caldwell, "IEEE 802.22: The first cognitive radio wireless regional area network standard," IEEE Communications Magazine, vol. 47, no. 1, pp. 130-138, 2009.
[7]FCC, "Unlicensed Operation in the TV Broadcast Bands; Additional Spectrum for Unlicensed Devices Below 900 MHz and in the 3 GHz Band," in "First Report and Order and Further Notice of Proposed Rule Making," 2006.
[8]FCC, "Unlicensed Operation in the TV Broadcast Bands, Additional Spectrum for Unlicensed Devices Below 900 MHz and in the 3 GHz Band," in "Second Report and Order and Memorandum Opinion and Order," 2008.
[9]Y. Ye, D. Wu, Z. Shu, and Y. Qian, "Overview of LTE Spectrum Sharing Technologies," IEEE Access, vol. 4, pp. 8105-8115, 2016.
[10]Ofcom, "TV white spaces: Aconsultation on white space device requirements," 2012.
[11]Ofcom, "TV white spaces:approach to coexistence," 2013.
[12]IDA, "Proposed Regulatory Framework for TV White Space Operations in the VHF/UHF Bands," 2013.
[13]IDA, "Explanatory Memo - Regulatory Framework for TV White Space Operations in the VHF/UHF Bands," 2014.
[14]交通部, "頻率供應計畫," 2018.
[15]Y. C. Liang, Y. Zeng, E. C. Y. Peh, and A. T. Hoang, "Sensing-Throughput Tradeoff for Cognitive Radio Networks," IEEE Transactions on Wireless Communications, vol. 7, no. 4, pp. 1326-1337, 2008.
[16]S. Eryigit, S. Bayhan, J. Kangasharju, and T. Tugcu, "Optimal Cooperator Set Selection in Social Cognitive Radio Networks," IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp. 6432-6443, 2016.
[17]M. Liangping, H. Xiaofeng, and S. Chien-Chung, "Dynamic open spectrum sharing MAC protocol for wireless ad hoc networks," in First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005., 2005, pp. 203-213.
[18]L. Ma, C. C. Shen, and B. Ryu, "Single-Radio Adaptive Channel Algorithm for Spectrum Agile Wireless Ad Hoc Networks," in 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2007, pp. 547-558.
[19]J. Jia, Q. Zhang, and X. S. Shen, "HC-MAC: A Hardware-Constrained Cognitive MAC for Efficient Spectrum Management," IEEE Journal on Selected Areas in Communications, vol. 26, no. 1, pp. 106-117, 2008.
[20]M. A. Shah, G. A. Safdar, and C. Maple, "DDH-MAC: A novel Dynamic De-Centralized Hybrid MAC protocol for Cognitive Radio Networks," in 2011 RoEduNet International Conference 10th Edition: Networking in Education and Research, 2011, pp. 1-6.
[21]T. Y. Wu, W. Liao, and C. S. Chang, "CACH: Cycle-Adjustable Channel hopping for control channel establishment in cognitive radio networks," in IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, 2014, pp. 2706-2714.
[22]R. Paul and Y. J. Choi, "Adaptive Rendezvous for Heterogeneous Channel Environments in Cognitive Radio Networks," IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7753-7765, 2016.
[23]F. Hessar and S. Roy, "Resource allocation techniques for cellular networks in TV white space spectrum," in 2014 IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN), 2014, pp. 72-81.
[24]V. Raj, I. Dias, T. Tholeti, and S. Kalyani, "Spectrum Access In Cognitive Radio Using a Two-Stage Reinforcement Learning Approach," IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 20-34, 2018.
[25]N. Tadayon and S. Aïssa, "A Multichannel Spectrum Sensing Fusion Mechanism for Cognitive Radio Networks: Design and Application to IEEE 802.22 WRANs," IEEE Transactions on Cognitive Communications and Networking, vol. 1, no. 4, pp. 359-371, 2015.
[26]G. Mange, U. Celentano, P. H. Lehne, T. Tjeltas, and M. López-Benítez, "Cognitive architecture and system solutions to offload LTE networks in TVWS," in 2013 Future Network & Mobile Summit, 2013, pp. 1-8.
[27]K. Wang, Y. Ma, H. Li, P. Liu, H. Sun, and H. Zhang, "A QoS-Based Hybrid Centralized/Distributed Resource Allocation Algorithm in Downlink Femtocell Networks," in 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), 2013, pp. 1-5.
[28]M. Jünger et al., 50 Years of Integer Programming 1958–2008. Springer, 2010.
[29]L. Li, J. P. Seymour, L. J. Cimini, and C. C. Shen, "Coexistence of Wi-Fi and LAA Networks With Adaptive Energy Detection," IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 10384-10393, 2017.
[30]V. S. M. Mehrnoush, S. Roy, M. Ghosh, "Analytical Modeling of Wi-Fi and LTE-LAA Coexistence: Throughput and Impact of Energy Detection Threshold," ArXiv e-prints, 2018.
[31]A. Saeed, M. Ibrahim, K. A. Harras, and M. Youssef, "Toward dynamic real-time geo-location databases for TV white spaces," IEEE Network, vol. 29, no. 5, pp. 76-82, 2015.
[32]IEEE, "Petition for reconsideration of proposed FCC white space rules," 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top