(3.215.183.251) 您好!臺灣時間:2021/04/23 14:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王俊皓
研究生(外文):Chun-Hao Wang
論文名稱:保留格式加密使用中國餘式定理
論文名稱(外文):Format Preserving Encryption using Chinese Remainder Theorem
指導教授:官大智官大智引用關係蔣依吾蔣依吾引用關係
指導教授(外文):D. J. GuanJohn Y. Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:34
中文關鍵詞:區塊加密法偽隨機置換中國餘式定理保留格式加密Feistel 網路
外文關鍵詞:Chinese Remainder TheoremBlock CipherPseudorandom PermutationFormat-Preserving EncryptionFeistel Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
近年來,我們將許多敏感性資料儲存於資料庫中,當我們要對資料庫中的資料進行加密時,傳統的區塊加密法在加密後會改變資料的長度和格式,所以在儲存密文時必須改變資料庫的表格結構,這將會耗費很多的成本。Format Preserving Encryption 則不需要這些改變,這個技術能夠使加密後的密文和原來的明文保持相同的長度和格式。但是對於目前的 FPE 結構其輸入明文的 bits 數過短一直是個令人不安的隱憂,其安全性無法得到充分的保障。因此我們使用一種方式,將明文 bits 數增長,並且以中國餘式定理進行特定資料的檢索,為此安全性增添一份保障。
In recent years, We store many sensitive datas in databases. But using traditional block ciphers encrypt data in databases, it will change data’s length and format. To store this ciphertexts, it is necessary to change existing database schema, and need a lot of cost. There is no need to change in Format-Preserving Encryption. This technique can make the cipertext has the same length and format as the plaintext. But too short input’s bits is a problem for security. So, we propose a method, it increases the length of bits, and using Chinse Remiander Theorem to query the specific data. It will provide high security.
Acknowledgments iii
摘要 iv
Abstract v
Chapter 1 緒論 1
1.1 研究背景與研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 相關研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 基礎知識 5
2.1 Format-Preserving Encryption Defi nition . . . . . . . . . . . . . . . . . . 5
2.2 Security Notion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 3 FPE 的基本方法 8
3.1 Prefi x Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Cycle-Walking Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Generalized-Feistel Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Chapter 4 FPE 演算法加上中國餘式定理的方法 14
4.1 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.1 運作流程圖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 運作演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 5 結論與未來展望 22
Bibliography 23
[1] W. Diffi e and M. Hellman, “New directions in cryptography,” IEEE transactions on
Information Theory, vol. 22, no. 6, pp. 644–654, 1976.
[2] N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers with overdefi ned
systems of equations,” in International Conference on the Theory and Application
of Cryptology and Information Security, pp. 267–287, Springer, 2002.
[3] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryption
standard. Springer Science & Business Media, 2013.
[4] M. Baldridge and E. Ambler, “Guidelines for implementing and using the nbs
data encryption standard,” tech. rep., NATIONAL BUREAU OF STANDARDS
GAITHERSBURG MD, 1995.
[5] M. Brightwell and H. Smith, “Using datatype-preserving encryption to enhance data
warehouse security,” in 20th National Information Systems Security Conference Pro-
ceedings (NISSC), pp. 141–149, 1997.
[6] J. Black and P. Rogaway, “Ciphers with arbitrary fi nite domains,” in Cryptographers’
Track at the RSA Conference, pp. 114–130, Springer, 2002.
[7] J. Patarin, “Security of random feistel schemes with 5 or more rounds,” in Annual
International Cryptology Conference, pp. 106–122, Springer, 2004.
[8] S. T, “Format preserving encryption,” Unpublished Voltage White Paper, 2008.
[9] T. Spies, “Feistel fi nite set encryption mode,” NIST Proposed Encryption Mode.
Available online at http://csrc. nist. gov/groups/ST/toolkit/BCM/documents/pro-
posedmodes/ff sem/ff sem-spec. pdf , 2008.
[10] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers, “Format-preserving encryp-
tion,” in International Workshop on Selected Areas in Cryptography, pp. 295–312,
Springer, 2009.
[11] M. Bellare, P. Rogaway, and T. Spies, “The ff x mode of operation for format-
preserving encryption,” NIST submission, vol. 20, 2010.
[12] B. Morris, P. Rogaway, and T. Stegers, “How to encipher messages on a small do-
main,” in Advances in Cryptology-CRYPTO 2009, pp. 286–302, Springer, 2009.
[13] E. Brier, T. Peyrin, and J. Stern, “Bps: a format-preserving encryption proposal,”
http://csrc. nist. gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-
spec. pdf, 2010.
[14] C. Jia, Z. Liu, J. Li, Z. Dong, and X. You, “A new integer fpe scheme based on feistel
network,” in Advances in Electric and Electronics, pp. 637–644, Springer, 2012.
[15] Z. Liu, C. Jia, J. Li, and X. Cheng, “Format-preserving encryption for datetime,”
in Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International
Conference on, vol. 2, pp. 201–205, IEEE, 2010.
[16] S. Vidhya and K. Chitra, “Survey of format preserving encryption,” International
Journal Of Computational Engineering Research, 2012.
[17] S. Vidhya and K. Chitra, “Enhancement of prefi x cipher in format preserving en-
cryption,” International Journal of Engineering Inventions, 2013.
[18] S. Vidhya and K. Chitra, “Format preserving encryption using feistel cipher,” in
International Conference on Research Trends in Computer Technology, ICRTCT-
2013, in Proceeding of International Journal of Computer Application (IJCA), pp. 5–
8, 2013.
[19] K. Chitra, “Effi cient fpe algorithm for encrypting credit card numbers,” vol. 14,
pp. 23–29, 01 2013.
[20] Z. Bhatt and V. Gupta, “Advance security technique for format preserving encryp-
tion,” in Inventive Computation Technologies (ICICT), International Conference on,
vol. 1, pp. 1–4, IEEE, 2016.
[21] S. Liang, Y. Zhang, J. Guo, C. Dong, Z. Liu, and C. Jia, “Effi cient format-preserving
encryption mode for integer,” in Computational Science and Engineering (CSE) and
Embedded and Ubiquitous Computing (EUC), 2017 IEEE International Conference
on, vol. 2, pp. 96–102, IEEE, 2017.
[22] B. Cui, B. Zhang, and K. Wang, “A data masking scheme for sensitive big data
based on format-preserving encryption,” in Computational Science and Engineering
(CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE International
Conference on, vol. 1, pp. 518–524, IEEE, 2017.
[23] M. Luby and C. Rackoff , “How to construct pseudorandom permutations from pseu-
dorandom functions,” SIAM Journal on Computing, vol. 17, no. 2, pp. 373–386,
1988.
[24] D. R. Stinson, Cryptography: theory and practice. CRC press, 2005.
[25] J. L. Smith, Design of Lucifer, a Cryptographic Device for Data Communications.
IBM Thomas J. Watson Research Center, 1971.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔