(3.236.228.250) 您好!臺灣時間:2021/04/22 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:侯博鈞
研究生(外文):Bo-Jyun Hou
論文名稱:同時運用實體無法複製函數與區塊鏈技術以增進車用通訊安全
論文名稱(外文):Simultaneous PUF and Blockchain in Authentication of Secure Vehicle Communication
指導教授:李淑敏李淑敏引用關係
指導教授(外文):Shu-Min Li
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:83
中文關鍵詞:關鍵字:實體無法複製函數、區塊鏈、車聯網
外文關鍵詞:Vehicle ad-hoc Network (VANET)Keyword: Physical Unclonable Function (PUF)Blockchain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著通訊發達,物聯網正在快速的成長,快速成長的龐大裝置與網路讓我們打破裝置之間的藩籬,串連裝置,即時呈現大量的資訊。物聯網包含車聯網,因此車聯網的安全設計關係著生命安全就顯得越來越重要。
資訊安全分成硬體安全、軟體安全與個人安全防護。硬體安全中實體無法複製函數(Physical Unclonable Function, PUF)利用裝置製程變異的隨機性與唯一性,是裝置的指紋。資訊安全的領域也越來越常使用實體無法複製函數,應用包括系統驗證、密鑰生成等領域,並逐漸成為硬體安全領域研究中的一個技術焦點之一。
利用區塊鏈(Blockchain)技術建立一個讓整個網路共同檢驗某事務真實性的記錄。物聯網、車聯網與資訊安全領域使用區塊鏈來做驗證或記錄的機制。
在此篇論文,我們將實體無法複製函數和區塊鏈的概念與機制用於車用通訊上。區塊鏈網路中車間通訊分為廣播與區塊鏈個別車間通訊。每一台車,必須在註冊後才能進入區塊鏈網路,而註冊時必須提供自己的實體無法複製函數做為身份驗證用途,進入區塊鏈網路的車子。每一台車可以回報路上發生的事件,並用透過實體無法複製函數做過身份驗證後,路側單元(Roadside Unit, RSU)才會將其回報的事件廣播給其他車輛,最後將這些通訊記錄透過區塊鏈儲存下來,也因為區塊鏈無法篡改的性質,從而預防惡意人士傳送惡意訊息給其他車輛。區塊鏈網路中個別車間通訊,也遵循註冊與實體無法複製函數做身份驗證。
最後,我們對安全性、惡意攻擊、效能進行分析,以佐證我們的方法的可行性。我們結果的PUF驗證率為100%,在廣播傳輸中,車子多寡和區塊數量成正比關係,因此當車子數量變多時,事件的真實性會越高。在個人傳輸中,耗費時間短,花費CPU計算時間不到一秒,就可以完成金鑰交換加上身份認證。
Physical Unclonable Function (PUF) uses the randomness and uniqueness of the device process variation, which is exactly the fingerprint of the device. Blockchain technology creates a block record that allows the entire network to test the authenticity of a transaction.
We use simutaneously PUFs and blockchains for vehicle communication to enrich automobile security. The communication in the blockchain network is divided into individual communication and broadcasting communication. Each car must be registered before it can enter the blockchain network. When registering, it must provide its own vehicle PUF for authentication purposes and link to the blockchain network. Each car can report real-time traffic events on the road to Roadside Unit (RSU), and RSU verifies the vehicle PUF as the vehicle identiy, RSU then broadcast the events to other vehicles, and finally all the other cars store and verify the events in blockchain. Individual communication in the blockchain network is also authenticated to communicate with each other after each car registering its PUF to RSU.
Finally, we analyze vehicle security, malicious attacks and efficency to demonstrate the feasibility of our integrated authentication for vehicle secure communication. Our result reaches 100% PUF verification. In broadcast communication, the number of cars is proportional to the number of blocks in blockchain scheme. With proportional of the number of cars, scalability is achieved with reasonable time penalty. In individual communication, it takes less than one second for CPU to calculate the key exchange and identity authentication.
目錄
誌謝 ii
摘要 iii
圖目錄 vii
表目錄 ix
第1章 簡介 1
1.1. 研究動機與目標 1
1.2. 內容大綱 1
第2章 背景知識與相關研究 1
2.1. 實體無法複製函數 1
2.1.1. PUF相關特性 6
2.2. 區塊鏈 6
2.2.1. 區塊鏈特性 7
2.2.2. 區塊鏈類型 7
2.2.3. 區塊鏈架構 11
2.2.4. 區塊鏈運作流程 11
2.2.5. 區塊鏈共識演算法 11
2.2.6. 區塊鏈應用 13
2.2.7. 虛擬貨幣首次公開發售ICO 14
2.3. 車用網路介紹 15
2.3.1. 車載隨意行動網路 15
2.3.2. 專用短距離通訊 16
2.4各類加密演算法 16
2.4.1對稱和非對稱加密演算法 17
2.4.2加密演算法的比較 17
2.4.3橢圓曲線加密 18
2.5 相關著作 23
2.6 主要貢獻 24
第3章 問題定義 25
3.1. 問題情境 26
3.2. 問題分析 32
3.3. 問題定義 33
第4章 PBVA方法與流程圖 34
4.1. PBVA流程圖 34
4.1.1. PUF Generation Stage 35
4.1.2. Enrollment Stage 38
4.1.3. Communication Stage 41
第5章 實驗結果 48
5.1. 實驗平台 48
5.2. Benchamrk 48
5.3. 安全性分析(Secruity Analysis) 50
5.4. 惡意攻擊分析(Malicious Attack Analysis) 50
5.5. 效能分析(Performance Analysis) 51
第6章 結論 61
參考資料 62
[1] http://www.2cm.com.tw/technologyshow_content.asp?sn=1505040004
[2] R. Pappu, R. Recht, and J. Taylor, “Physical one-way functions,” in Science, pp. 2026-2030, September 2002.
[3] P. Tuyls, G.-J. Schrijen, B. Škorić, J. v. Geloven, N. Verhaegh and R. Wolters, “Read-proof hardware from protective coatings,” in Proc. IEEE 8th International Conference on Cryptographic Hardware and Embedded Systems, pp. 369-383, October 2006.
[4] I. Verbauwhede and R. Maes, “Physically unclonable functions: manufacturing variability as an unclonable device identifier,” in Proc. ACM Great Lakes Symposium on VLSI, pp. 455-460, May 2011.
[5] I. A. B. Adames, J. Das and S. Bhanja, “Survey of emerging technology based physical unclonable funtions,” in Proc. ACM Great Lakes Symposium on VLSI, May 2016.
[6] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “A technique to build a secret key in integrated circuits for identification and authentication application,” in Proc. IEEE Symposium on VLSI Circuits, Digest of Technical Papers, pp. 176-159, June 2004.
[7] D. Lim. “Extracting Secret Keys from Integrated Circuits,” Massachusetts Institute of Technology, May 2004.
[8] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “A technique to build a secret key in integrated circuits for identification and authentication application,” in Proc. Symposium on VLSI Circuits. Digest of Technical Papers, pp. 159-176, June 2004.
[9] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large scale characterization of RO-PUF,” in Proc. IEEE International Symposium on Hardware-Oriented Security and Trust, pp. 94-99, June 2010.
[10] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret key generation,” in Proc. 44th ACM/IEEE Design Automation Conference, pp. 9-14, June 2007.
[11] U. Ruhrmair, J. Solter, and F. Sehnke, “On the foundations of physical unclonable functions,” in Proc. Cryptology ePrint Archive, June 2009.
[12] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random functions,” in Proc. ACM Conference on Computer and Communications Security, pp. 148-160, November 2002.
[13] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large scale characterization of RO-PUF,” in Proc. IEEE Symposium on Hardware-Oriented Security and Trust, pp. 94-99, June 2010.
[14] C.-E. D. Yin and G. Qu, “LISA: Maximizing RO PUF''s secret extraction,” in Proc. IEEE Symposium on Hardware-Oriented Security and Trust, pp. 100-105, June 2010.
[15] D. Suzuki and K. Shimizu, “The glitch puf: A new delay-puf architecture exploiting glitch shapes,” in Proc. International Workshop on Cryptographic Hardware and Embedded Systems, pp. 366-382, August 2010.
[16] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs and their use for IP protection,” in Proc. International Workshop on Cryptographic Hardware and Embedded Systems Workshop, Vol. 4727, pp. 63-80, September 2007.
[17] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up sram state as an identifying fingerprint and source of true random numbers,” in Proc. IEEE Transactions on Computers, Vol. 58, Issue 9, September 2009.
[18] U. Rührmair, C. Hilgers, S. Urban, A. Weiershäuser, E. Dinter, B. Forster, and C. Jirauschek, “Revisiting Optical Physical Unclonable Functions,” in Proc. IACR Cryptology ePrint Archive, May 2013
[19] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “Extended abstract: The butterfly PUF protecting IP on every FPGA,” in Proc. IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 67-70, June 2008.
[20] Y. Su, J. Holleman, and B. Otis, “A 1.6pJ/bit 96% stable chip-id generating circuit using process variations,” in Proc. IEEE International Solid-State Circuits Conference. Digest of Technical Papers, pp. 406-611, February 2007.
[21] R. Maes, P. Tuyls, and I. Verbauwhede, “Intrinsic pufs from flip-flops on reconfigurable devices,” in Proc. Benelux Workshop on Information and System Security, Vol. 17, November 2008.
[22] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann and Ulrich Rührmair, “The Bistable Ring PUF: A new architecture for strong Physical Unclonable Functions,” in Proc. IEEE International Symposium on Hardware-Oriented Security and Trust, June 2011.
[23] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann and Ulrich Rührmair, “Characterization of the bistable ring PUF,” in Proc. Design, Automation & Test in Europe Conference & Exhibition, March 2012
[24] J. Das, K. Scott, D. Burgett, S. Rajaram and S. Bhanja, “MRAM PUF: A Novel Geometry Based Magnetic PUF With Integrated CMOS,” in Proc. IEEE Transactions on Nanotechnology, Vol. 14, pp. 1459-1462, May 2015.
[25] H. Hnigschmid and G. Mller, “Data memory with a plurality of memory banks,” in Proc. U.S. Patent 6741513, May 2004.
[26] P. K. Naji, “MRAM architecture and system,” in Proc. U.S. Patent 6418046, July 2002.
[27] R. Helinski, D. Acharyya and J. Plusquellic, “A Physical Unclonable Function Defined Using Power Distribution System Equivalent Resistance Variations,” in Proc. ACM/IEEE Design Automation Conference, pp. 676–681, July 2009.
[28] R. Helinski, D. Acharyya and J. Plusquellic, “Quality Metric Evaluation of a Physical Unclonable Function Derived from an IC''s Power Distribution System,” in Proc. Design Automation Conference, pp. 240–243, June 2010.
[29] J. Ju, R. Chakraborty and R. Rad, J. Plusquellic, “Bit String Analysis of Physical Unclonable Functions based on Resistance Variations in Metals and Transistors,” in Proc. IEEE International Symposium on HardwareOriented Security and Trust, pp. 13–20, June 2012.
[30] J. Ju, R. Chakraborty, C. Lamech and J. Plusquellic, “Stability Analysis of a Physical Unclonable Function based on Metal Resistance Variations,” in Proc. IEEE International Symposium on HardwareOriented Security and Trust, June 2013.
[31] J. Roberts, I. E. Bagci, M. Zawawi, J. Sexton, N. Hulbert, Y. Noori, M. Young, C. Woodhead, M. Missous, M. Migliorato, et al. “Using quantum confinement to uniquely identify devices,” in Proc. Scientific Reports, Vol.5, November 2015.
[32] R.MAES, “Physically Unclonable Functions: Constructions, Properties and Applications,” November 2013.
[33] R. Maes, P. Tuyls and I. Verbauwhede, “Statistical analysis of silicon PUF responses for device identification,” in Proc. Workshop on Secure Component and System Identification, January 2008.
[34] L. Bolotnyy and Gabriel Robins, “Physically Unclonable Function-Based Security and Privacy in RFID Systems,” in Proc. IEEE International Conference on Pervasive Computing and Communications, March 2007.
[35] P. Tuyls and L. Batina, “RFID-Tags for Anti-counterfeiting,” in Proc. ACM Cryptographers Track at the RSA conference, pp. 115-131, February 2006.
[36] L. Batina, J. Guajardo, B. Preneel, P. Tuyls and I. Verbauwhede, “Public-Key Cryptography for RFID Tags and Applications,” in Proc. IEEE International Conference Pervasive Computing and Communications Workshops, March 2007
[37] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash system,” May 2009.
[38] Z. Zheng, S. Xie, H.-N. Dai and H. Wang, “Blockchain Challenges and Opportunities: A Survey,” in Proc. International Journal of Web and Grid Services, January 2017.
[39] 陳柏全、柯亮宇。智慧安全車輛與車載無線通訊國際發展。趨勢簡介財團法人車輛研究測試中心
[40] M. Asim, J. Guajardo, S. S. Kumar and P. Tuyls, “Physical Unclonable Functions and Their Applications to Vehicle System Security,” in Proc. IEEE 69th Vehicular Technology Conference, pp.1-5, April 2009.
[41] S. Dolev, L. Krzywiecki, N. Panwar and M. Segal, “Optical PUF for Non Forwardable Vehicle Authentication,” in Proc. IEEE 14th International Symposium on Network Computing and Applications, September 2015.
[42] J. J. Karst and G. Brodar, “Connecting Multiple Devices with Blockchain in the Internet of Things,” Tallinn University of Technology, January 2017.
[43] D. M. Rankin, B. W. Scotney, P. J. Morrow, D. R. McDowell and B. K PierscionekEmail, “Dynamic iris biometry: a technique for enhanced identification,” in Proc. BMC Research Notes, July 2010.
[44] http://www.ithome.com.tw/news/105373
[45] http://wiki.mbalib.com/zh-tw/%E5%8C%BA%E5%9D%97%E9%93%BE
[46] https://kknews.cc/zh-tw/finance/j85y4ky.html
[47] http://chuansong.me/n/880157851058
[48] https://cn.hyperledger.org/
[49] https://www.r3.com/
[50] K. Toyoda, P. T. Mathiopoulos, I. Sasase and T. Ohtsuki, “A Novel Blockchain-Based Product Ownership Management System (POMS) for Anti-Counterfeits in The Post Supply Chain,” in Proc. IEEE Access, vol. 5, pp. 17465-17477, June 2017.
[51] K. Tanaka, K. Nagakubo and R. Abe, “Blockchain-based electricity trading with Digitalgrid router,” in Proc. IEEE International Conference on Consumer Electronics - Taiwan, pp. 201-202, June 2017.
[52] S. Kiyomoto, M. S. Rahman and A. Basu, “On blockchain-based anonymized dataset distribution platform,” in Proc. IEEE 15th International Conference on Software Engineering Research, Management and Applications, pp. 85-92, June 2017.
[53] https://read01.com/zL8g3P.html
[54] http://chuansong.me/n/880157851058
[55] I.-. Lin and T.-C. Liao, “Survey of Blockchain Security Issues and Challenges”, in Proc. International Journal of Network Security, Vol.19, pp.653-659, September 2017
[56] http://www.nasdaq.com/article/seven-industries-that-blockchain-will-disrupt-in-2017-cm734366
[57] https://market.cloud.edu.tw/content/junior/computer/tp_ct/content7-b.htm
[58] http://avp.toko.edu.tw/docs/class/3/%E5%AF%86%E7%A2%BC%E5%AD%B8%E5%8E%9F%E7%90%86%E8%88%87%E6%8A%80%E8%A1%93.pdf
[59] http://www.poslist.org/
[60] Guardtime & Intrinsic ID, “Internet of Things Authentication: A Blockchain solution using SRAM Physical Unclonable Functions”.
[61] http://toments.com/367790/
[62] http://wiki.mbalib.com/zh-tw/%E6%99%BA%E8%83%BD%E5%90%88%E7%BA%A6
[63] https://blog.gasolin.idv.tw/2017/09/02/what-is-smart-contract/
[64] https://guardtime.com/
[65] https://www.intrinsic-id.com/
[66] https://guardtime.com/technology
[67] Y.Yuan and F.-Y. Wang, “Towards Blockchain-based Intelligent Transportation Systems,”in Proc. IEEE 19th International Conference on Intelligent Transportation Systems, November 2016
[68] B. Leiding, P. Memarmoshrefi and D. Hogrefe, “Self-managed and blockchain-based vehicular ad-hoc networks,” in Proc. ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, September 2016.
[69] A. Dorri, M. Steger, S. S. Kanher, and R. Jurdak, “Blockchain: A distributed solution to automotive security and privacy,” in Proc. eprint arXiv:1704.00073, March 2017
[70] S. Rowan, M. Clear, M. Huggard and C. Mc Goldrick, “Securing vehicle to vehicle communication using blockchain through visible light and acoustic side-channels,” in Proc. eprint arXiv:1704.02553, April 2017.
[71] https://zh.wikipedia.org/wiki/IEEE_802.11p
[72] S.Zeadally, R.Hunt, Y.-S.Chen, A.Irwin and A.Hassan, “Vehicular ad hoc networks (VANETS): status, results and challenges,” in Proc. Telecommunication Systems, Vol. 50, No. 4, pp. 217-241, August 2012.
[73] B. Mishra, S. K. Panigrahy, T. Charan Tripathy, D. Jena and S. K. Jena, “A secure and efficient message authentication protocol for VANETs with privacy preservation,” in Proc. World Congress on Information and Communication Technologies, pp. 880-885, December 2011.
[74] E. Barker, “Recommendation on Key Management”, in Proc. National Institute of Standards and Technology, January 2016.
[75] https://coinmarketcap.com/
[76] http://www.jinse.com/blockchain/118687.html
[77] https://technet.microsoft.com/zh-tw/library/cc545901(v=office.12).aspx
[78] https://cdn.rawgit.com/andreacorbellini/ecc/920b29a/interactive/reals-add.html
[79] http://www.geometer.org/mathcircles/ecc.pdf
[80] R. Maes and I. Verbauwhede, “Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions,” in Proc. Towards Hardware-Intrinsic Security, pp. 3-37, October 2010.
[81] M. Taniguchi, M. Shiozaki, H. Kubo, and T. Fujino, “A stable key generation from puf responses with a fuzzy extractor for cryptographic authentications,” in Proc. IEEE 2nd Global Conference on Consumer Electronics, pp. 525–527, October 2013.
[82] J. Das, K.Scott and S. Bhanja, “MRAM PUF: Using Geometric and Resistive Variations in MRAM Cells,” in Proc. ACM Journal on Emerging Technologies in Computing Systems, Vol. 13, Issue 1, December 2016
[83] http://qopto.com/research/qcpuf/
[84] U. Rührmair, Sehnke, F. Sehnke, J. Sölter, G. Dror, S. Devadas and J. Schmidhuber, “Modeling attacks on physical unclonable functions,” in Proc. ACM Conference on Computer and Communications Security, pp. 237-249, October 2010.
[85] https://blockchain.info/zh-cn
[86] https://blockexplorer.com/
[87] https://www.jianshu.com/p/8afe15e7a11f
[88] https://zh.wikipedia.org/wiki/%E4%B8%89%E5%85%83%E6%82%96%E8%AE%BA
[89] V. Miller, “Uses of elliptic curves in cryptography” in Proc. Advances in Cryptography, pp. 417-426, January 1985.
[90] N. Koblitz, “Elliptic curve cryptosystem”, in Proc. Mathematics of Computation, Vol. 48, pp. 203-209, January 1987.
[91] R. Singh and S. Miglani, “Efficient and secure message transfer in VANET,” in Proc. International Conference on Inventive Computation Technologies, pp. 1-5, August 2016.
[92] G. Samara, W. A. H. Al-Salihy and R. Sures, “Security Analysis of Vehicular Ad Hoc Nerworks,” in Proc. IEEE International Conference on Network Applications, Protocols and Services, pp.55-60, September 2010.
[93] N. Chaubey, “Security Analysis of Vehicular Ad Hoc Networks (VANETs): A Comprehensive Study,” in Proc. International Journal of Security and Its Applications, May 2016.
[94] http://askeing.blogspot.com/2007/12/blog-post.html
[95] B. Ustaoglu, “Obtaining a secure and efficient key agreement protocol from (H) MQV and NAXOS,” in Proc. Design, Codes and Cryptography, pp. 329-342, March 2008.
[96] https://www.ethereum.org/
[97] https://www.ibm.com/blockchain/hyperledger
[98] https://www.antfin.com/
[99] https://tw.saowen.com/a/b9b5442524561144cb086eb59a3a7ab6eeed2770e0020fb1defd0c7f14cfe69c
[100] https://tw.saowen.com/a/cdaefc3b1286d0e511e3f353901899c3346987aacce9a81a7e7fc52c66e2ad08
[101] https://en.wikipedia.org/wiki/Convolutional_neural_network
[102] https://chtseng.wordpress.com/2017/09/12/%E5%88%9D%E6%8E%A2%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF/
[103] C. Zhang, X. Lin, R. Lu, P. Ho and X. Shen, “An Efficient Message Authentication Scheme for Vehicular Communications,” in Proc. IEEE Transactions on Vehicular Technology, vol. 57, pp. 3357-3368, July 2008.
[104] https://en.bitcoin.it/wiki/Secp256k1
[105] T. W. Kim, B. D. Choi and D. K. Kim, “Zero bit error rate id generation circuit using via formation probability in 0.18 μm CMOS process,” in Proc. IEEE Electronics Letters, vol. 50, pp. 876-877, June 2014.
[106] B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster and A. C. Foster, “Secure authentication using the ultrafast response of chaotic silicon photonic microcavities,” in Proc. Conference on Lasers and Electro-Optics, pp. 1-2, June 2016.
[107] https://wiki.mbalib.com/zh-tw/ICO
[108] https://zhuanlan.zhihu.com/p/36994641
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔