( 您好!臺灣時間:2021/04/10 21:56
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chien-Min Liao
論文名稱(外文):Wearable radar sensor for non-contact pulse transit time measurement.
指導教授(外文):Tzyy-Sheng Horng
外文關鍵詞:self-injection-locked radarwearable antennapulse transit timedoppler radar
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This thesis presents a non-contact radar system. This non-contact radar system uses wearable microstrip antenna in a single-frequency continuous-wave radar which operates concurrently with two different modes. The two different modes are: self-injection-locked CW mode (SIL mode) and range-correlated CW mode (RC CW mode). Then, the Labview software is used to collect the data and calculate the pulse transmit time.
To conduct this experiment, three antennas are designed first. These three antennas are: rectangular microstrip antenna, loop microstrip antenna, and flexible antenna. These three antennas are used in the radar system to detect human’s pulse and heartbeats. Also, the influences of human body on the antenna are taken into consideration. Second, these three antennas are applied in the radar system, operating with two modes, ie, SIL mode and RC CW mode. The radar system utilizes a voltage control oscillator with injection port to transmit RF signal to wrist and chest antennas through the power splitter. The wrist antenna detects movement due to pulse and makes oscillator enter the SIL state. And thus, a frequency demodulator can be used to obtain the waveform of pulse. On the other hand, the chest antenna detects the movements due to heartbeats and then an IQ demodulator can be used to obtain the waveform of heartbeats.
Based on Biopac company’s pulse transit time measurement using electrocardiography and photolethysmography sensors, the results show that the peak time difference between the two resultant output signals in the radar system is closely correlated with the pulse transit time. Compared to other contact sensors, the presented wearable physiological monitoring radar system takes the advantages of low cost, convenience, and comfort.
論文審定書 i
論文公開授權書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 vii
表次 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 血壓量測方法與脈搏傳遞時間 2
1.3 章節規劃……. 7
第二章 天線設計 8
2.1 矩形微帶天線設計 8
2.2 環形微帶天線設計 14
2.3 軟板天線設計 20
2.3.1基板參數萃取 20
2.3.2軟板天線設計 24
第三章 利用單頻連續波測量脈搏傳遞時間 30
3.1 自我注入鎖定雷達簡介 30
3.2 實驗系統架構 32
3.3 實驗設置與量測結果 34
第四章 結論 44
參考文獻 46
附錄A……….. 49
[1]M. I. Skolnik, Introduction to radar systems, 3rd ed. New York: McGraw Hill, pp. 14-19, 2001.
[2]J. C. Lin, J. Kiernicki, M. Kiernicki, and P. B. Wollschlaeger, “Microwave Apexcardiography,” IEEE Trans. Microw. Theory Tech., vol. 27, no. 6, pp. 618-620, Jun. 1979.
[3]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, and J. Lin, “0.25/ spl mu/m CMOS and BiCMOS single-chip direct-conversion Doppler radar for remote sensing of vital signs,” in 2002 IEEE Int. Solid State Circuits Conf. Tech. Dig. Papers, pp. 348–349.
[4]C. H. Chan, C. C. Chou and H. R. Chuang, “Integrated packaging design of low-Cost bondwire interconnection for 60-GHz CMOS vital-signs radar sensor chip with millimeter-wave planar antenna,” IEEE Trans. Compon. Packag. Manuf. Technol vol. 8, no. 2, pp. 177-185, Feb. 2018.
[5]G. C. Smith, “A noncontact method for detecting acoustic emission using a microwave Doppler radar motion detector,” IEEE Trans Ultrason., Ferroelect., Freq. Control, vol. 52, no. 9, pp. 1613-1617, Sept. 2005.
[6]C. H. Chao, T. W. Hsu and C. H. Tseng, “Giving Doppler more bounce: A 5.8 GHz microwave high-sensitivity Doppler radar system,” IEEE Microw. Mag., vol. 17, no. 1, pp. 52-57, Jan. 2016.
[7]M. K. Singh et al., “System modeling and signal processing of microwave Doppler radar for cardiopulmonary sensing,” in International Conference on Signal Processing and Communication (ICSC). IEEE, 2015, pp. 227-232.
[8]L. Liu, M. Popescu, M. Rantz and M. Skubic, “Fall detection using doppler radar and classifier fusion,” in Proc. IEEE-EMBS Int. Conf. Biomedical Health Informatics, Hong Kong, Jan. 2012, pp. 180-183.
[9]C. Gu and C. Li, “From tumor targeting to speech monitoring: Accurate respiratory monitoring using medical continuous-wave radar sensors,” IEEE Microw. Mag., vol. 15, no. 4, pp. 66-76, June 2014.
[10]F. K. Wang et al., “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory and Techn., vol. 58, no. 12, pp. 4112-4120, Dec. 2010.
[11]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838-848, Mar. 2004.
[12]Emelia J. Benjamin et al., “On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: a report from the american heart association,” Circulation, pp. e67-e492,2018.
[13]T. Stoeckel. Korotkoff Sounds: Definition & Phases. [Online]. Available: https://study.com/academy/lesson/korotkoff-sounds-definition-phases.html.
[14]G. Ogedegbe, and T. Pickering. “Principles and techniques of blood pressure measurement.” Cardiology clinics 28.4 (2010), pp. 571–586. Jun. 2018.
[15]C. C. Poon, Y. M. Wong, and Y. T. Zhang, “M-health: the development of cuff-less and wearable blood pressure meters for use in body sensor networks,” in Life Science Systems and Applications Workshop, 2006. IEEE/NLM, 2006, pp. 1-2.
[16]S.-Y. Ye, G.-R. Kim, D.-K. Jung, S.-W. Baik, and G.-R. Jeon, “Estimation of systolic and diastolic pressure using the pulse transit time,” Int. J.Biomed. Biological Eng., vol. 4, no. 7, pp. 303-308, Jan. 2010.
[17]A. Arza, J. Lazaro, E. Gil, P. Laguna, J. Aguilo, and R. Bailon, “Pulse transit time and pulse width as potential measure for estimating beat-to beat systolic and diastolic blood pressure,” in Proc. Computing in Cardiology Conf., Zaragoza, Spain, Sep. 2013, pp. 22-25.
[18]Heartisans 血壓手錶.[Online]. Available: http://www.heartisans.com
[19]Z. Aleksandra, “Blood pressure estimation using pulse transit time models,” M.S. thesis, Dept. C.S. Eng., Univ. Oulu, 2017.
[20]W. D. Peterson, D. A. Skramsted and D. E. Glumac. (2015). Phoenix Ambulatory Blood Pressure Monitor project sub-project:piezo film pulse sensor [Online]. Available: http://www.phoenix.tc-ieee.org/index.htm
[21]J. Proença, et al., “Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population?,” Conf Proc IEEE Eng Med Biol Soc, vol. 2010, pp. 598-601, 2010.
[22]C. Gabriel, et al. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz [Online]. Available: http://niremf.ifac.cnr.it/tissprop/
[26]R. Adler, “A Study of Locking Phenomena in Oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351-357, June 1946.
[27]Zaber Technologies Inc. Zaber WIKI Available :http://www.zaber.com/wiki/Manuals/T-NA
[A1]G.A. Deschamps, “Microstrip microwave antennas,” Presented at the third USAF Symposium on Antennas, 1953.
[A2]H. Gutton and G. Baissinot, “Flat aerial for ultra high frequencies,” French Patent No. 703 113, 1955.
[A3]R. E. Munson, “Conformal microstrip antennas and microstrip phased arrays.” IEEE Trans. Antennas Propagat., vol. ap-22, no. 1, pp. 74-78, Jan 1974.
[A4]J. W. Howell, “Microstrip Antennas,” IEEE Trans. Antennas Propagat., vol. ap-23, no. 1, pp. 90-93, Jan 1975.
[A5]A. G. Derneryd, "Linearly polarized microstrip antennas," IEEE Trans. Antennas Propagat, vol. 24, no. 6, pp. 846-851, November 1976.
[A6]L. C. Shen, S. A. Long, M. R. Allerding, and M. D. Walton, “Resonant frequency of a circular disc, printed-circuit antenna,” IEEE Trans. Antennas Propagat, vol. ap-25, no. 4, pp. 595-596, Jul 1977.
[A7]Y. T. Lo, D. Solomon and W. F. Richards, “Theory and experiment on microstrip antennas,” IEEE Trans. Antennas Propagat., vol. ap-27, no. 2, pp. 137-145, Mar 1979.
[A8]N. K. Uzunoglu, N. G. Alexopoulos, and J. G. Fikioris, “Radiation properties of microstrip dipoles,” IEEE Trans. Antennas Propagat., vol. ap-27, no. 6, pp. 853-858, Nov 1979.
[A9]K. R. Carver, J. W. Mink. “Microstrip antenna technology.” IEEE Trans. Antennas Propagat. vol. ap-29, no. 1, pp. 2-24, Jan. 1981.
[A10]W. F. Richards, Y. T. Lo, and D. D. Harrison, “An improved theory of microstrip antennas and applications,” IEEE Trans. Antennas Propagat., vol. ap-29, no. 1, pp. 38-46, Jan 1981.
[A11]M. C. Bailey and M. D. Deshpande, “Integral equation formulation of microstrip antennas,” IEEE Trans. Antennas Propagat., vol. ap-30, no. 4, pp. 651-656, July 1982.
[A13]C. A. Balanis, Antenna theory, analysis and design, 2nd, New York: John Wiley& Sons, 1997, ch14.2.
[A14]C.A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, New York,1989
[A15]R.F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill Book Co., p. 183,1961.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔