跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴威羽
研究生(外文):Wei-Yu Lai
論文名稱:太陽能板與蓄電池供電之電動助力自行車
論文名稱(外文):Electric Assisted Bicycle with Photovoltaic Panel and Battery Set
指導教授:莫清賢莫清賢引用關係
指導教授(外文):Chin-Sien Moo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:56
中文關鍵詞:電動助力自行車太陽能電池板永磁式同步機最大功率點追蹤
外文關鍵詞:Electric assisted bicyclePhotovoltaic (PV) panelPermanent magnet synchronous machine (PMSM)Maximum power point (MPP)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在研製一由太陽能電池板與電池組混合供電之電動助力自行車。自行車由換流器驅動之永磁式同步機提供電動助力,且具能量反饋煞車功能。太陽能電池板搭配升壓轉換器,在可變光照強度下執行最大功率點追蹤,產生之功率可直接供電給同步電動機,或儲存於蓄電池組。本研究針對中短程距離行駛需求族群規劃太陽能電動助力自行車各組件之功率容量,設計轉換器,以數位訊號處理器控制太陽能電池板,蓄電池組與永磁式同步機之間的功率流向。最後,設置實驗平台,模擬電動自行車各種運轉狀態,測試系統性能。
The electric assisted bicycle with hybrid power sources of a photovoltaic (PV) panel and a battery set is studied in the thesis. A permanent magnet synchronous machine (PMSM) is driven by an inverter for assisting the bicycle motion and regenerative braking function. A boost converter is used to operate the PV panel at the maximum power point (MPP) under variable irradiant conditions. The generated power from the PV panel can be supplied directly to the synchronous motor or stored in the battery set. In this research, an electric assisted bicycle powered by the battery and the PV panel is designed for riding medium and short distances. A digital signal processor is used to control the power flowing among the PV panel, the battery set and the PMSM. Finally, an experimental platform is set up to emulate the operating conditions and to test the running performances of the electric assisted bicycle.
目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究背景與動機 1
1-2 論文大綱 6
第二章 太陽能電動助力自行車 7
2-1 永磁式同步機 7
2-2 磷酸鐵鋰電池 12
2-3 太陽能電池板 14
第三章 系統運轉狀態與電力轉換電路分析 15
3-1 電力轉換電路架構 15
3-2 電動機模式 16
3-3 發電機模式 18
3-4 系統運作狀態 20
3-5 系統控制策略 28
第四章 系統測試結果 30
4-1 實驗平台 30
4-2 系統運作狀態測試 32
第五章 結論與未來研究方向 40
5-1 結論 40
5-2 未來研究方向 41
參考文獻 42
[1]G. Cipriani, V. D. Dio, R. Miceli, G. R. Galluzzo, and M. Russo, “Evaluation of Performance and Efficiency and Type Approval of an Electrically Assisted Bicycle Drive,” in Proceedings of IEEE RERA, pp. 1163-1168, October 2013.
[2]K. Hatada, K. Hirata, and T. Sato, “Energy-Efficient Power Assist Control with Periodic Disturbance Observer and Frequency Estimator,” in Proceedings of IEEE AMC, pp. 376-381, April 2016.
[3]S. Cheng and I. Huang, “Real-time Dynamic Power Management of Electrically Assisted Bicycle,” in Proceedings of IEEE ICMA, pp. 313-318, August 2011.
[4]J. Liu, Z. Su, and J. Chen, “Comparison of Two Electric Braking Methods with Regenerative Capability of Brushless DC Machine and Their Four-Quadrant Operation,” in Proceedings of IEEE YAC, pp. 1116-1120, May 2018.
[5]S. M. Billah, K. K. Islam, and S. Hossain, “Experimental Verification of Regenerative Braking Characteristics by Applying Different Motor Armature Voltage,” in Proceedings of IEEE ISET, pp. 1-4, October 2016.
[6]O. Sinchuk and I. Kozakevich, “Research of Regenerative Braking of Traction Permanent Magnet Synchronous Motors,” in Proceedings of IEEE MEES, pp. 92-95, November 2017.
[7]M. Lv, Z. Chen, Y. Yang, and J. Bi, “Regenerative Braking Control Strategy for A Hybrid Electric Vehicle with Rear Axle Electric Drive,” in Proceedings of IEEE CAC, pp. 521-525, October 2017.
[8]Y. Tao, X. Xie, H. Zhao, W. Xu, and H. Chen, “A Regenerative Braking System for Electric Vehicle with Four in-Wheel Motors Based on Fuzzy Control,” in Proceedings of IEEE CCC, pp. 4288-4293, July 2017.
[9]R. G. Chougale and C. R. Lakade, “Regenerative Braking System of Electric Vehicle Driven by Brushless DC Motor Using Fuzzy Logic,” in Proceedings of IEEE ICPCSI, pp. 2167-2171, September 2017.
[10]E. R. Aswathi, P. K. Prathibha, and J. R. Nair, “Regenerative Braking of BLDC Motor Using Fuzzy Control for Electric Vehicles,” in Proceedings of IEEE ICICCT, pp. 1661-1665, April 2018.
[11]必翔電動助力自行車,http://www.pihsiang.com.tw/SFB-18_N.pdf。
[12]二次電池比較表,台灣立凱電能科技股份有限公司。
[13]W. Zhuang, S. Luand, and H. Lu, “Progress in Materials for Lithium-ion Power Batteries,” in Proceedings of IEEE IGBSG, pp. 1-2, April 2014.
[14]M. S. Faramarzi and Z. Sanaee, “Fabrication of Silicon Nanowires Suitable for Lithium-ion Battery Anode Material,” in Proceedings of IEEE ICEE, pp. 1169-1171, May 2015.
[15]Y. Mekonnen, A. Sundararajan, and A. I. Sarwat, “A Review of Cathode and Anode Materials for Lithium-ion Batteries,” in Proceedings of IEEE SoutheastCon, pp. 1-6, April 2016.
[16]M. Gao and Y. Wang, “Brushless Direct Current Motor Control System without Position Sensor Based on Digital Signal Processor,” in Proceedings of IEEE ICIME, pp. 340-343, April 2010.
[17]M. S. Aspalli, F. M. Munshi, and S. L. Medegar, “Speed Control of BLDC Motor with Four Switch Three Phase Inverter Using Digital Signal Controller,” in Proceedings of IEEE ICPACE, pp. 371-376, August 2015.
[18]T. Nama, A. K. Gogoi, and P. Tripathy, “Application of A Smart Hall Effect Sensor System for 3-Phase BLDC Drives,” in Proceedings of IEEE IRIS, pp. 208-212, October 2017.
[19]吳財福、張健軒、陳裕愷,太陽能供電與照明系統綜論,全華科技圖書股份有限公司,2003年。
[20]A. Muhtaroglu, “A Novel Digital MPPT Control Architecture for Renewable System Integration,” in Proceedings of IEEE SET, pp. 1-4, December 2010.
[21]B. Subudhi and R. Pradhan, “A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems,” Journal of Sustainable Energy, vol. 4, pp. 89-98, January 2013.
[22]S. V. Dhople, A. Davoudi, G. Nilles, and P. L. Chapman, “Maximum Power Point Tracking Feasibility in Photovoltaic Energy-Conversion Systems,” in Proceedings of IEEE APEC, pp. 2294-2299, February 2010.
[23]S. S. Mohammed, D. Devaraj, and P. I. Ahamed, “Maximum Power Point Tracking System for Stand Alone Solar PV Power System Using Adaptive Neuro-Fuzzy Inference System,” in Proceedings of IEEE PESTSE, pp. 1-4, January 2016.
[24]S. Shi, Y. Wang, and P. Jin, “Study of Maximum Power Point Tracking Methods for Photovoltaic Power Generation System,” in Proceedings of IEEE CAC, pp. 835-840, November 2013.
[25]B. Wang, X. Meng, and B. Li, “Maximum Power Point Tracking Photovoltaic Power Generation Based on Adaptive Disturbance Observer,” in Proceedings of IEEE CAC, pp. 5593-5597, October 2017.
[26]電動助力自行車安全檢測基準,https://goo.gl/jUQtqR。
[27]霍爾元件,https://goo.gl/LL5q4j。
[28]S. Zaim, J. P. Martin, B. N. Mobarakeh, and F. M. Tabar, “High Performance Low Cost Control of A Permanent Magnet Wheel Motor Using A Hall Effect Position Sensor,” in Proceedings of IEEE VPPC, pp. 1-6, September 2011.
[29]Y. Zhao, W. Huang, and J. Yang, “Fault Diagnosis of Low-Cost Hall-Effect Sensors Used in Controlling Permanent Magnet Synchronous Motor,” in Proceedings of IEEE ICEMS, pp. 1-5, November 2016.
[30]詹家福,“陣列式升壓型電池電源模組之架構與分析”,國立中山大學電機工程學系碩士論文,2010年。
[31]C. C. Hua and Z. W. Syue, “Charge and Discharge Characteristics of Lead-Acid Battery and LiFePO4 Battery,” in Proceedings of IEEE ECCE, pp. 1478-1483, June 2010.
[32]High Power Lithium Ion ANR26650M1 Data Sheet, A123 Systems,2015年。
[33]S. V. Kuchak, A. N. Voroshilov, and E. A. Chudinov, “Discharge Characteristics of Lithium-ion Accumulators Under Different Currents,” in Proceedings of IEEE EDM, pp. 435-438, July 2017.
[34]翁敏航、楊茹媛、管鴻、晁成虎,太陽能板:原理、元件、材料、製程與檢測技術,東華出版社,2012年。
[35]莊嘉琛,太陽能工程-太陽能電池篇,全華科技圖書股份有限公司,2001年。
[36]蔡進譯,“超高效率太陽能電池-從愛因斯坦的光電效應談起”,物理雙月刊,廿七卷,五期,第701-719頁,2005年10月。
[37]林明獻,太陽能電池技術入門,全華科技圖書股份有限公司,2007年。
電子全文 電子全文(網際網路公開日期:20231105)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top