跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊義
研究生(外文):Jun-Yi Chen
論文名稱:雙擴展卡爾曼濾波器應用於磷酸鋰鐵電池電量估計
論文名稱(外文):State of Charge Estimation for LiFePO4 Battery Using Dual Extended Kalman Filter
指導教授:盧展南盧展南引用關係
指導教授(外文):Chan-Nan Lu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:電池電量狀態電池老化實驗磷酸鋰鐵電池電池電量估測擴展卡爾曼濾波
外文關鍵詞:LiFePO4 batteryState of ChargeCell charging and discharging experimentsState of Charge estimationextended Kalman filter
相關次數:
  • 被引用被引用:4
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:132
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用二階RC電路作為電池等效電路模型,且利用雙擴展卡爾曼濾波器各別對於電池等效電路參數和電池電量進行線上估測。本研究對單顆磷酸鋰鐵電池進行循環充放電實驗,並使用擴展卡爾曼濾波器估測參數結果來觀察其變化情形,且比較以循環次數和電量變化差為基準對參數進行更新下,根據電量估測誤差結果,求得最佳更新依據。再將電池根據串聯與並聯組裝成電池組,進而觀察各別在不同組裝狀況下電池組其估測結果,皆可以表現出估測值逐漸逼近實際值的現象。
This thesis proposes a dual Extended Kalman Filter (EKF) technique to estimate the State of Charge (SOC) of LiFePO4 battery based on a second-order RC equivalent model. Cell charging and discharging experiments are conducted to observe the changes in the circuit parameters and its effect of SOC estimation errors by using EKF. Taking into account of state of health and based on the SOC estimation errors after various numbers of charging and discharging cycles, suitable parameter update intervals are suggested to minimize SOC estimation. Battery module consists of parallel and series cells are also tested to validate the efficacy of the proposed SOC estimation method for practical application.
目錄
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
1 第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 二次電池類別比較 2
1.2.2 電池管理系統介紹 8
1.3 論文架構 10
2 第二章 電池電量估測方法及電池等效模型 13
2.1 電池電量狀態估測技術 13
2.1.1 放電測試法 14
2.1.2 電解液濃度量測法 14
2.1.3 開路電壓量測法 14
2.1.4 有載電壓量測法 14
2.1.5 庫侖電量累積法 15
2.1.6 內阻測量法 15
2.2 電池等效電路模型簡介 16
2.2.1 理想模型 16
2.2.2 線性模型 17
2.2.3 戴維寧等效模型 18
2.2.4 二階RC電池模型 19
2.3 建立開路電壓模型 21
3 第三章 電池電量狀態估測 25
3.1 卡爾曼濾波器介紹 25
3.1.1 卡爾曼濾波器 25
3.1.2 擴展卡爾曼濾波器 34
3.2 擴展卡爾曼濾波應用 37
3.2.1 擴展卡爾曼濾波應用於電池參數估計 37
3.2.2 擴展卡爾曼濾波應用於電池電量估計 40
4 第四章 估測結果與分析 42
4.1 實驗平台架構 42
4.1.1 老化實驗 44
4.2 電池參數估測結果 48
4.3 電池電量估測分析 51
4.3.1 電池參數更新依據 51
4.3.2 比較不同初始SOC和老化結果 54
4.4 電池組電量估測 56
4.5 討論 58
5 第五章 結論及未來研究方向 59
5.1 結論 59
5.2 未來研究方向 60
參考文獻 61
[1]李茗家. “穩定的巨型電池-抽蓄水力儲能系統.” 能源報導, 民國105年9月: pp. 10
[2]Peter Wolfs. "An economic assessment of “second use” lithium-ion batteries for grid support." 2010 20th Australasian Universities Power Engineering Conference. Christchurch, New Zealand: IEEE, 5-8 Dec. 2010. pp.1-6.
[3]廖國宏. 磷酸鋰鐵陰極材料研究. 國立暨南國際大學,碩士論文, 民國93年7月
[4]A. Masias, and D. Corrigan. Batteries for electric and hybrid vehicles. In: Reddy TB (ed) Linden’s handbook of batteries. New York: McGraw Hill, 2011.
[5]楊錢威. 智慧型居家清潔機器人之充電站研製. 國立成功大學,碩士論文, 民國94年6月.
[6]張瓊仁. 鎳氫電池電容量管理之研究. 國立中山大學,碩士論文, 民國94年7月
[7]Hatsukari. High power Ni-MH Battery of Toyota NHW20 Prius. n.d. https://commons.wikimedia.org/wiki/File:NiMH_Battery_01gJPG (accessed July 12, 2017).
[8]陳怡萍. 鉛酸與鋰離子蓄電池之電量估測. 國立中山大學,碩士論文, 民國96年6月
[9]M. S. Sudhan. "Advances in VRLA battery technology for telecommunications." Journal of Power Sources, 2007: pp.40 – 48
[10]陳開瑞. 用於電動車之磷酸鋰鐵電池電量估測. 國立中山大學,碩士論文, 民國101年8月.
[11]H. Rahimi-Eichi, U. Ojha, F. Baronti, and M. Y. Chow. "Battery management system: An overview of its application in the smart grid and electric vehicles." IEEE Industrial Electronics Magazine, 2013: pp. 4-16
[12]S.J. Lee, J.H. Kim, J.M. Lee, Cho Bo H,. "the state and parameter estimation of an li-ion battery using a new ocv soc concept." IEEE Power Electronics Specialists Conference. IEEE, June 2007. pp.17-21
[13]Claudio Burgos, Doris Saez, Marcos E. Orchad, Roberto Gardenas,. "Fuzzy modeling for the state of charge estimation of lead acid batteries." journal of power sources, 2015
[14]Xilun Chen, and Dong Sun. "Adaptive parameter identification method and state of charge estimation of lithium ion battery." IEEE international conference on electrical mahines and systems. 2014
[15]Saeed Sepasi, Reza Ghorbani, Bor. Yann. Liaw. "SOC Estimation for Aged Lithium-Ion Batteries Using Model Adaptive Extended Kalman Filter." IEEE Transportation Electrification Conference and Expo. IEEE, June 2013
[16]Ivan Jokić. "State-of-charge estimaton of lithium-ion batteries using extended Kalman filter and unscented Kalman filter." 2018 23rd International Scientific-Professional Conference. on Information Technology. 19-24 Feb. 2018
[17]K.K.C. Yu , N.R. Watson, and J. Arrillaga. "An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking." IEEE Transactions on Power Delivery. IEEE, April 2005. pp. 1577-1584
[18]N. Watrin, B. Blunier, and A. Miraoui,. "Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation." Proceedings of IEEE Transportation Electrification Conference and Expo. Dearborn, Mich, USA: IEEE, June 2012. pp. 1–6.
[19]W. Y. Chang, "The state of charge estimating methods for battery: A review." ISRN Applied Mathematics. 2013.
[20]張永昌. 鉛酸電池電量預測及壽命分析之研究. 國立彰化師範大學,碩士論文, 民國92年6月.
[21]S. Sato, A. Kawamura. "A new estimation method of state of charge using terminal voltage and internal resistance for lead acid battery." In Power Conversion Conference. IEEE, 2002. pp. 565-570
[22]王致凱. 具電池電量與健康狀態線上校準之電池電源系統. 國立中山大學,碩士論文, 民國105年7月
[23]Choi, Jong-Hak Lee and Woojin. "Novel State-of-Charge Estimation Method for Lithium Polymer Batteries Using Electrochemical Impedance Spectroscopy." Journal of Power Electronics, Vol. 11, No. 2, 2011: pp 237-243.
[24]F. Huet“A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries.” Journal of Power Sources, 1998: pp 59-69..
[25]Abbas Fotouhi, Daniel J. Auger, Karsten Propp, and Stefano Longo. "Accuracy Versus Simplicity in Online Battery Model Identification." IEEE Transactions on Systems, Man, and Cybernetics: Systems, Sep. 22 , 2016: 195 - 206.
[26]Ala Al-Haj Hussein , and Issa Batarseh. "An overview of generic battery models." 2011 IEEE Power and Energy Society General Meeting. San Diego, CA, USA: IEEE, 24-29 July 2011.
[27]J. Remmlinger, M. Buchholz, M. Meiler, P. Bernreuter, and K. Dietmayer. "State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation." Journal of Power Sources,, June 15, 2011: pp. 5357
[28]Simon Haykin. Kalman Filtering and Neural Networks. John Wiley & Sons, 2011.
[29]Amit Jain, and N. R. Shivakumar. "Power System Tracking and Dynamic State Estimation." 2009 IEEE/PES Power Systems Conference and Exposition. Seattle: IEEE, 2009. pp. 1-8
[30]A.M. Leite da Silva, M.B. Do Coutto Filho, and J.F. de Queiroz. "State Forecasting in Electric Power Systems." IEE Proceedings C - Generation, Transmission and Distribution, Sep 1983: pp. 237 – 244
[31]S.-J. Huang, and K.-R. Shih. "Dynamic-state-estimation scheme including nonlinear measurement-function considerations." IEE Proceedings-Generation, Transmission and Distribution, Nov 2002: pp. 673-678.
[32]M. B. Do Coutto Filho, and J. C. Stacchini De Souza,. "Forecasting-Aided State Estimation—Part I: Panorama." IEEE Transactions on Power Systems, Nov. 2009: pp.1667-1677
[33]史光榮. 電力系統動態狀態估計與負載預測之研究. 國立成功大學電機工程學系,博士論文, 民國91年
[34]A. P. Andrews, and M. S. Grewal. Kalman Filtering: Theory and Practice Using Matlab. John Wiley & sons, Ltd, 2001.
[35]Nanophosphate High Power Lithium Ion Cell ANR26650M1-B. A123 Systems, Inc, 2011
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊