跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱誠
研究生(外文):Yu-Cheng Chen
論文名稱:以氮化鋁鈧壓電薄膜研製3.5 GHz之固態微型諧振器
論文名稱(外文):Fabrication of 3.5 GHz solidly mounted resonator with AlScN piezoelectric thin film
指導教授:陳英忠
指導教授(外文):Ying-Chung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:84
中文關鍵詞:諧振器機電耦合係數濾波器布拉格反射器氮化鋁鈧快速熱退火
外文關鍵詞:Bragg reflectorAlScNElectromechanical coupling coefficientResonatorFiltersRapid thermal annealing
相關次數:
  • 被引用被引用:2
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究目標為以氮化鋁鈧研製3.5 GHz固態微型諧振器及濾波器,旨在透過鈧的摻雜使元件之有效機電耦合係數提高。本研究以鉬及二氧化矽做為高、低聲阻抗薄膜,於矽基板上堆疊成布拉格反射器;再以射頻磁控濺鍍系統將氮化鋁鈧壓電薄膜沉積於布拉格反射器上,透過調變濺鍍壓力、濺鍍功率及氮氣比例(N2/N2+Ar)等製程參數,尋求氮化鋁鈧薄膜c軸優選取向之最佳化特性;最後鍍上金屬上電極,形成諧振器及濾波器元件。
本研究透過調整對應諧振頻率之壓電薄膜厚度後,成功研製出一諧振頻率為3.46 GHz之SMR元件,符合所設定諧振頻率3.5 GHz之誤差範圍內,且Return loss為-30.62 dB及機電耦合係數為2.26%;另外,為了改善諧振器之頻率響應特性,將諧振器以不同退火溫度進行退火處理,結果顯示SMR元件之頻率響應皆獲得改善,其中以退火溫度700℃對元件的頻率響應改善最佳。為了進一步驗證氮化鋁鈧壓電薄膜對聲波元件特性之影響,本研究再行設計3.5 GHz之SMR濾波器元件,並成功製作出一中心頻率為3.44 GHz之SMR濾波器元件,符合所設定中心頻率3.5 GHz之誤差範圍內,並具有Insertion loss -17.2 dB、3 dB頻寬48 MHz。
本研究綜合元件特性分析之結果,以氮化鋁為壓電薄膜所製作之SMR元件的機電耦合係數約在1%左右,而以氮化鋁鈧薄膜製作出之SMR元件則擁有較佳之機電耦合係數2.26%,可證明於氮化鋁薄膜內摻雜鈧,確實有助於提升薄膜之機電耦合係數。
The 3.5 GHz solidly mounted resonator (SMR) and filter are fabricated using AlScN thin films, due to its high electromechanical coupling coefficient. In this study, the SiO2/Mo multilayered thin films with low and high acoustic impedances are used to consist the Bragg reflectors on Si substrates. Onto the Bragg reflectors, AlScN thin films are deposited using an RF magnetron sputtering system. In order to investigate and obtain the highly (002) c-axis oriented piezoelectric AlScN thin films, various sputtering pressures, sputtering powers and gas ratios (N2/N2+Ar) are varied to improve the crystalline characteristics. Finally, the top metal electrodes are deposited to obtain the solidly mounted resonators (SMRs) and filters.
After adjusting the thickness of the piezoelectric film corresponding to the resonant frequency, this study has successfully developed an SMR device with a resonant frequency of 3.46 GHz, which was within the error range of 3.5 GHz and had a return loss of -30.62 dB and an electromechanical coupling coefficient of 2.26%. In order to improve the frequency response of the resonator, the resonator was annealed at different temperatures. The results showed that the frequency responses of the SMRs were improved after annealing, among them, the frequency response of the SMR was optimal at the annealing temperature of 700°C. To further verify the effectiveness of AlScN piezoelectric thin films on the characteristics of acoustic devices, this study designed another 3.5 GHz SMR filter and successfully fabricated with a center frequency of 3.44 GHz, an insertion loss of -17.2 dB and 3dB bandwidth of 48MHz.
According to the analysis of the characteristics of the fabricated devices in this study, the electromechanical coupling coefficient of the SMR made of aluminum nitride (AlN) was about 1%, whereas the SMR made of aluminum nitride scandium film had a better electromechanical coupling coefficient of 2.26%. It could be demonstrated that the doping of scandium in the aluminum nitride film did contribute to the improvement of the electromechanical coupling coefficient of the piezoelectric film.
目錄

論文審定書 i
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1 研究背景 1
1.2 薄膜體聲波諧振器簡介 2
1.3 研究動機 5
1.4 研究內容 8
第二章 理論分析 9
2.1 鉬(Molybdenum, Mo)結構與特性 9
2.2 二氧化矽(Silicon dioxide, SiO2)結構與特性 9
2.3 氮化鋁(Aluminium Nitride, AlN)結構與特性 9
2.4 氮化鋁鈧 12
2.5 反應性濺鍍製備氮化鋁鈧薄膜 12
2.6 壓電理論 13
2.6.1 壓電效應 13
2.7 薄膜沉積原理 15
2.8 濺鍍原理 16
2.8.1 輝光放電 16
2.8.2 磁控濺鍍 17
2.8.3 射頻濺鍍 18
2.8.4 反應性濺鍍 18
2.9 快速熱退火(Rapid Thermal Annealing, RTA)製程 20
2.9.1 快速熱退火原理 20
2.9.2 快速熱退火製程對於薄膜結晶性之影響 21
2.10 SMR的理論 21
2.10.1 SMR特點 22
2.10.2 SMR的基本設計 22
2.11 SMR的參數性質 26
2.11.1 品質因子Q量測 26
2.11.2 機電耦合係數 量測 26
2.12 T型濾波器 27
第三章 實驗方法與步驟 28
3.1 實驗流程 28
3.2 基板清洗 28
3.3 元件設定之參數 30
3.4 SMR以及T型濾波器的製作流程 31
3.4.1 SMR製作流程 31
3.4.2 T型濾波器製作流程 32
3.5 直流與交流濺鍍系統與薄膜沉積 33
3.6 反應性射頻濺鍍系統與薄膜沉積 38
3.7 黃光微影製程 39
3.8 薄膜之特性分析 41
3.8.1 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 41
3.8.2 X光繞射(X-Ray Diffraction, XRD) 41
3.8.3 原子力顯微鏡(Atomic Force Microscopy, AFM) 42
3.8.4 能量分散分析儀(Energy Dispersive Spectrometer, EDS) 42
3.9 快速熱退火(Rapid Thermal Annealing, RTA) 43
3.10 元件訊號量測 43
第四章 結果與討論 44
4.1 反射層的探討 44
4.1.1 高聲阻抗層鉬之最佳濺鍍參數 44
4.1.2 低聲阻抗層SiO2之最佳濺鍍參數 45
4.2 壓電層的探討 46
4.2.1 濺鍍壓力之影響 46
4.2.2 氣體分率之影響 49
4.2.3 濺鍍功率之影響 52
4.2.4 不同濺鍍條件之成份分析 55
4.3 SMR元件之頻率響應特性 57
4.4 SMR元件之退火處理 60
4.5 SMR元件之T型濾波器 62
第五章 結論 63
參考資料 64

圖目錄

圖1-1 FBAR元件之三種不同型態:(a)面蝕型、(b)背蝕型及(c)堆疊型 4
圖1-2 不同壓電材料之壓電係數(d33)與居禮溫度關係圖 5
圖1-3 ScxAl1-xN薄膜隨鈧摻雜濃度之(a)XRD分析圖及(b)壓電係數d33變化 6
圖1-4 鈧摻雜濃度對於ScxAl1-xN薄膜晶向成長之影響。(a~d) ScxAl1-xN薄膜之TEM剖面結構圖,(e~h) hexagonal相及cubic相之TEM結構分析示意圖;Sc摻雜濃度(a, e) 41%、(b, f) 42%、(c, g) 43%、(d, h) 45%
7
圖2-1 AlN的晶體結構 : (a)單位晶胞、(b)變形四面體結構、(c)纖鋅礦立體結構示意圖 10
圖2-2 壓電效應示意圖 : (a)正壓電效應,(b)逆壓電效應 14
圖2-3 薄膜沉積原理 16
圖2-4 直流輝光放電結構與電位分布圖 17
圖2-5 磁控濺射結構圖 18
圖2-6 反應式濺射示意圖 19
圖2-7 快速熱退火處理過程示意圖 21
圖2-8 波長為λ/2之SMR 24
圖2-9 波長為λ/4之SMR 25
圖3-1 SMR電極示意圖 31
圖3-2 T型階梯式濾波器電極示意圖 32
圖3-3 直流磁控濺鍍系統 35
圖3-4 射頻磁控濺鍍系統 36
圖3-5 射頻磁控濺鍍系統操作流程圖 37
圖3-6 舉離法流程圖 40
圖3-7 AlN之JCPDS 42
圖4-1鉬薄膜最佳濺鍍參數之表面粗糙度分析圖 45
圖4-2二氧化矽薄膜之表面粗糙度分析 45
圖4-3 不同濺鍍壓力下成長氮化鋁鈧薄膜之XRD圖 47
圖4-4 不同濺鍍壓力下成長氮化鈧鋁薄膜之表面及剖面形貌圖;(a) 10 mTorr、(b) 20 mTorr、(c) 30 mTorr 48
圖4-5 不同氮氣比例下成長氮化鈧鋁薄膜之XRD圖 50
圖4-6 不同氮氣比例下成長氮化鈧鋁薄膜之SEM表面及剖面形貌圖;(a) 20 %、(b) 50 %、(c) 80 % 51
圖4-7 不同濺鍍功率下成長氮化鈧鋁薄膜之XRD圖 53
圖4-8 不同濺鍍功率下成長氮化鈧鋁薄膜之SEM表面及剖面形貌圖;(a) 200 W、(b) 250 W、(c) 300 W 54
圖4-9 不同濺鍍條件下成長氮化鋁鈧薄膜,其薄膜內含鈧量之變化圖;(a)不同濺鍍壓力、(b)不同通入氮氣比例、(c)不同濺鍍功率 56
圖4-10 壓電薄膜厚度為863 nm之SMR元件頻率響應 58
圖4-11 調整壓電薄膜厚度後之SMR元件S11頻率響應 58
圖4-12 調整壓電薄膜厚度後之SMR元件S21頻率響應 59
圖4-13 不同退火溫度對SMR元件頻率響應之影響 61
圖4-14 3.5 GHz SMR濾波器頻率響應圖 62

表目錄

表1-1 壓電材料特性表 2
表2-1 AlN的材料基本特性表 11
表2-2 λ/2及 λ/4之SMR元件 22
表3-1 材料聲波特性表 30
表3-2 鉬薄膜沉積參數 34
表3-3 二氧化矽薄膜沉積參數 34
表3-4 氮化鈧鋁薄膜之最佳濺鍍參數 39
表3-5 RTA實驗製程參數 43
表4-1 不同濺鍍壓力下成長氮化鋁鈧薄膜之繞射峰角度 47
表4-2 SMR元件S21訊號比較 59
[1]Ntagwirumugara, E., Gryba, T., Zhang, V., Dogheche, E. and Lefebvre, J., “Analysis of frequency response of IDT/ZnO/Si SAW filter using the coupling of modes model”. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54, pp. 2011-2015, 2007.
[2]Mccarron, K., Kline, G., Martin, J., & Lakin, K., “Growth and characterization of aluminium nitride thin films for piezoelectric devices”. IEEE Ultrasonics Symposium Proceedings., vol. 1, pp. 673-676, 1988
[3]Awang, Z., Miles, R., Milne, S., & Tu, Y., “Sol-gel derived bulk acoustic wave devices for cellular communication applications”. IEEE International Conference on Semiconductor Electronics, vol. 1, pp. 238-243, 1996.
[4]Lee, S., Yoon, K. H., & Lee, J., “ Influence of electrode configurations on the quality factor and piezoelectric coupling constant of solidly mounted bulk acoustic wave resonators”. Journal of Applied Physics, vol. 92, pp. 4062-4069, 2002..
[5]Mattila, T., Oja, A., Seppa, H., Jaakkola, O., Kiihamaki, J., Kattelus, H., Tittonen, I. “Micromechanical bulk acoustic wave resonator”. IEEE Ultrasonics Symposium, vol. 1, pp. 945-948, 2002.
[6]Lanz, R., Carazzetti, P., & Muralt, P., “Surface micromachined BAW resonators based on AlN”. IEEE Ultrasonics Symposium, vol. 1, pp. 981-983, 2002.
[7]Hara, M and M. Esashi, “RF MEMS and MEMS Packaging”, International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, pp. 115-122, 2004.
[8]Kim, H. H., Ju, B. K., Lee, Y. H., Lee, S. H., Lee, J. K., & Kim, S. W. “A noble suspended type thin film resonator (STFR) using the SOI technology”. Sensors and Actuators A: Physical, vol. 89, pp. 255-258, 2001.
[9]Kirby, P., Potter, M., Williams, C., & Lim, M. “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators”. Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[10]Huang, C., Tay, K., & Wu, L. “Fabrication and performance analysis of film bulk acoustic wave resonators”. Materials Letters, vol. 59, pp. 1012-1016, 2005.
[11]Jakkaraju, R., Henn, G., Shearer, C., Harris, M., Rimmer, N., & Rich, P. “Integrated approach to electrode and AlN depositions for bulk acoustic wave (BAW) devices”. Microelectronic Engineering, vol. 70, pp. 566-570, 2003.
[12]Lee, S., Lee, J., & Yoon, K. H. “Growth of highly c-axis textured AlN films on Mo electrodes for film bulk acoustic wave resonators”. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, pp. 1-5, 2003.
[13]K. M. Lakin, J. R. Belsick, J. P. McDonald, K. T. McCarron and C.W. Andrus, “Bulk acoustic wave resonators and filters for 2GHz”, IEEE MTT-S, pp. 1487-1490, 2002.
[14]Tay, K., Huang, C., Wu, L., & Lin, M. “Performance characterization of thin AlN films deposited on Mo electrode for thin-film bulk acoustic-wave resonators”. Japanese Journal of Applied Physics, vol. 43, pp. 5510-5515, 2004.
[15]Newell, W. “Face-mounted piezoelectric resonators”, Proceedings of the IEEE, vol. 53, pp. 575-581, 1965.
[16]Lakin, K., Kline, G., & Mccarron, K. “Development of miniature filters for wireless applications”, Proceedings of IEEE MTT-S International Microwave Symposium, vol. 43, pp. 2933-2939, 1995.
[17]Pinkett, S., Hunt, W., Barber, B., & Gammel, P. “Broadband characterization of zinc oxide-based solidly mounted resonators”, Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition, pp. 15-19, 2002.
[18]Naik, R., Lutsky, J., Reif, R., Sodini, C., Becker, A., Fetter, L., . . . Wong, Y. “Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, pp. 292-296, 2000.
[19]Lakin, K. “Thin film resonator technology”, IEEE International Frequency Control Sympposium, pp. 765-778. 2005.
[20]Lakin, K. “Thin Film Resonator and Filters”, IEEE International Frequency control symposium, pp. 895-906. 1999.
[21]Lanz, R., Dubois, M., & Muralt, P. “Solidly mounted BAW filters for the 6 to 8 GHz range based on AlN thin films”. 2001 IEEE Ultrasonics Symposium, vol. 1, pp. 843-846, 2001.
[22]Loebl, H., Metzmacher, C., Peligrad, D., Mauczok, R., Klee, M., Brand, W., . . . Lobeek, J. “Solidly mounted bulk acoustic wave filters for the GHz frequency range”. 2002 IEEE Ultrasonics Symposium, vol. 1, pp. 919-923, 2002.
[23]Kim, S., Kim, J., Park, H., & Yoon, G. “AlN-based film bulk acoustic resonator devices with W/SiO multilayers reflector for rf bandpass filter application”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 19, pp. 1164-1169, 2001.
[24]Dubois, M., Muralt, P., Matsumoto, H., & Plessky, V. “Solidly mounted resonator based on aluminum nitride thin film”. 1998 IEEE Ultrasonics Symposium, vol. 1, pp. 909-912, 1998.
[25]Rödel, J., & Li, J. “Lead-free piezoceramics: Status and perspectives”, MRS Bulletin, vol. 43, pp. 576-580, 2018.
[26]Akiyama, M., Kamohara, T., Kano, K., Teshigahara, A., Takeuchi, Y., & Kawahara, N. “Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering”, Advanced Materials, vol. 21, pp. 593-596, 2008.
[27]Corso, A. D., Posternak, M., Resta, R., & Baldereschi, A. “Ab initiostudy of piezoelectricity and spontaneous polarization in ZnO”, Physical Review B, vol. 50, pp. 10715-10721, 1994.
[28]廖秋風,“氮化物粉體”,材料與社會,卷40,頁59,1990。
[29]Kim, B.K., Lee, Y.H., Lee, S.H., Lee, J.K.& Kim, S.W. “A noble suspended type thin film resonator (STFR) using the SOI technology”, Sensors and Actuators A: Physical, vol. 89, pp. 255-258, 2001.
[30]Kirby, P. B., Potter, M. D. G., Williams, C. P. & Lim, M. Y. “Thin film piezoelectric property considerations for surface acoustic wave and thin film bulk acoustic resonators”, Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[31]吳朗,”電子陶瓷-壓電陶瓷”,全球資訊圖書,1994。
[32]Lengauer, W. “Investigations in the scandium-nitrogen system”, Journal of Solid State Chemistry, vol.76, pp. 412-415, 1988.
[33]Gall, D., Petrov, I., Hellgren, N., Hultman, L., Sundgren, J. E., & Greene, J. E. “Growth of poly- and single-crystal ScN on MgO(001): Role of low-energy N2 irradiation in determining texture, microstructure evolution, and mechanical properties”, Journal of Applied Physics, vol. 84, pp. 6034-6041, 1998.
[34]Lambrecht, W. R. “Electronic structure and optical spectra of the semimetal ScAs and of the indirect-band-gap semiconductors ScN and GdN”, Physical Review B, vol. 62, pp. 13538-13545, 2000.
[35]Gall, D., Städele, M., Järrendahl, K., Petrov, I., Desjardins, P., Haasch, R. T., . . . Greene, J. E. “Electronic structure of ScN determined using optical spectroscopy, photoemission, andab initio calculations”, Physical Review B, vol. 63, pp. 125119-125126, 2001.
[36]Stampfl, C., Mannstadt, W., Asahi, R., & Freeman, A. J. “Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations”, Physical Review B, vol. 63, pp. 155106-155114, 2001.
[37]Al-Brithen, H. A., Smith, A. R., & Gall, D. “Surface and bulk electronic structure ofScN(001)investigated by scanning tunneling microscopy/spectroscopy and optical absorption spectroscopy”, Physical Review B, vol. 70, pp. 1-22, 2004.
[38]Thaddeus, B. Massalski, “Binary alloy phase diagrams”. American society for Metals, vol. 1, 1986.
[39]Tasnádi, F., Alling, B., Höglund, C., Wingqvist, G., Birch, J., Hultman, L., & Abrikosov, I. A. “Origin of the anomalous piezoelectric response in wurtzite ScxAl1−xN alloys”, Physical Review Letters, vol. 104, pp. 137601-137604, 2010.
[40]Farrer, N., & Bellaiche, L. “Properties of hexagonal ScN versus wurtzite GaN and InN”, Physical Review B, vol. 66, pp. 201203-201206, 2002.
[41]Farrer, N., & Bellaiche, L. “Properties of hexagonal ScN versus wurtzite GaN and InN”, Physical Review B, vol. 66, 2002.
[42]Alsaad, A., & Ahmad, A. (n.d.). Piezoelectricity of ordered (ScxGa1-xN) alloys from first principles. The European Physical Journal B, vol. 54, pp. 151-156, 2006.
[43]Turner, R., Fuierer, P., Newnham, R., & Shrout, T. “Materials for high temperature acoustic and vibration sensors: A review”, Applied Acoustics, vol. 41, pp. 299-324, 1994.
[44]Petrov, I., Barna, P. B., Hultman, L., & Greene, J. E. “Microstructural evolution during film growth”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, pp. S117-S128, 2003.
[45]Berry, R. W, Hall, P. M. & Harris, M. T. “Thin film technology.” D.Van Nostrand, Princeton , N.J , 1968.
[46]余建邦,”process and analysis of nano wire in InGaAs/AlInAs by focus ion beam”, 國立中山大學物理研究所碩士論文, pp. 1-80, 1996。
[47]Kar, J., Bose, G., & Tuli, S. “Influence of rapid thermal annealing on morphological and electrical properties of RF sputtered AlN films”, Materials Science in Semiconductor Processing, vol. 8, pp. 646-651, 2005.
[48]Beshkov, G., Spasov, D., Manolov, E., Nedev, N., Georgiev, S., Ivanov, Ts., Grigorov, K, “properties of AlNx nanofilm prepare by rapid thermal annealing”, Bulg. J. Phys, vol. 35, pp. 129-134, 2008.
[49]Vergara, L., Olivares, J., Iborra, E., Clement, M., Sanz-Hervás, A., & Sangrador, J. “Effect of rapid thermal annealing on the crystal quality and the piezoelectric response of polycrystalline AlN films”, Thin Solid Films, vol. 515, pp. 1814-1818, 2006.
[50]K. M. Lakin, “Thin film resonators and filters”, IEEE Ultrasonics Sympium Proc, vol. 2, pp. 895-906, 1999.
[51]魏清梁,“固態微型諧振器之壓電層與反射層研製”,國立中山大學電機工程研究所碩士論文,pp. 1-113, 2005。
[52]Kim, S., Kim, J., Lee, J., Lee, S., & Yoon, K. H. “Bragg reflector thin film resonator using aluminium nitride deposited by RF sputtering”, Asia-Pacific Microwave Conference, pp. 1535-1538, 2000.
[53]Loebl, H., Metzmacher, C., Milsom, R., Lok, P., van Straten, F., & Tuinhout, A. “RF Bulk Acoustic Wave Resonators and Filters”, Journal Of Electroceramics, vol. 12, pp. 109-118, 2004.
[54]Kim, D., Yim, M., Chai, D., Park, J., & Yoon, G. “Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Japanese Journal Of Applied Physics, vol. 43, pp. 1545-1550, 2004.
電子全文 電子全文(網際網路公開日期:20240904)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top