(3.234.221.162) 您好!臺灣時間:2021/04/14 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林子傑
研究生(外文):Zih-Jie Lin
論文名稱:虛擬實境設計應用於復健型醫療輔具
論文名稱(外文):Design of Virtual Reality Systems integrated with the Medical Assistive Technologies for Rehabilitation Purpose
指導教授:潘正堂
指導教授(外文):Cheng-Tang Pan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:110
中文關鍵詞:多軸平台Unity 3D醫療輔具虛擬實境下肢外骨骼輔具
外文關鍵詞:Unity 3DMulti-axis platformVirtual realityMedical assistive technologiesLower-limb exoskeleton
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為藉由開發虛擬實境 (Virtual reality, VR) 應用於醫療復健系統,VR 為
近年來新興之體感與影像技術,而VR 影像設計可結合於各種領域上,以發展出多
樣化的科技平台,其中復健型醫療輔具乃是協助病患加速復健效率與恢復能力之
醫療技術,病人於傳統式的復健學習意願較低,因此將VR 應用於醫療輔具可帶給
病人復健上不同的感受以增加其學習意願。VR 影像設計利用Unity 3D 軟體進行
設計,並透過HTC Vive 頭盔顯示器以及手把控制器進行VR 體驗,Vive 手把控制
器主要是利用Vive 基地台發出紅外線偵測手把之位置,利用此位置資訊設計出不
同的動作控制。本論文將設計兩種不同之VR 影像並分別結合於以下兩種復健型
醫療輔具以做探討分別為下肢外骨骼輔具 (Lower-limb exoskeleton, LLE) 的步行
式復健以及自行車平台的踩踏式復健。步行式復健VR 影像部分為設計一虛擬角
色模擬人體行走之步態,步行於虛擬世界中,再透過Vive 手把控制器裝設於外骨
骼上,使VR 影像可與下肢外骨骼進行同步行走,在機構設計部分使用Solidworks
3D 軟體進行設計及結構慣性分析,外骨骼構造上也運用可調節式機構以符合所有
使用者的需求與舒適度,扭矩部分,將馬達與諧和式減速機 (Harmonic drive, HD)
結合以達到高扭矩之效果;踩踏式復健為了提升虛擬影像與實際狀態的真實性,將
自行車置於多軸平台上並與VR 影像結合,設計出具有互動功能的復健輔具,藉由
Vive 手把控制器裝設於自行車之龍頭與踏板,使自行車的動作訊息傳輸至VR 影
像進而達成互動性的指標,在此利用Visual C#程式撰寫自行車之運動回饋,並將
其回饋資訊傳入至多軸平台使平台同步於自行車之動作,讓體感更為逼真。透過本
論文之設計,不管是步行式或踩踏式復健均可以帶給病人不同的訓練效果,並依病
人之需求選擇適合自己之復健輔助器材,藉以達到最佳效果。
The purpose of this paper was to develop virtual reality (VR) which applied to
medical rehabilitation system. In recent years, VR was the somatosensory and imaging
technology. The design of VR can be combined with various fields to develop a diverse
technology platform. Medical assistive technologies could assist patients to accelerate
rehabilitation and recovery. Patients were less willing to learn in traditional rehabilitation,
so VR applied in medical assistive technologies could bring the patients different feeling
and increase their willing to learn. Unity 3D, an image modeling software, was used to
design a virtual image environment. The VR experiment was used HTC Vive headset and
controller which detected the position by the Vive base station. There were some
difference design of motion control by this position. In this paper, there were two design
of VR images combined with the medical assistive technologies including walking
rehabilitation of lower-limb exoskeleton (LLE) and stepping rehabilitation of bike
platform. The walking rehabilitation of VR image was to design the virtual character
which simulated the human gait. The Vive controller was installed on the LLE, so the VR
image can be synchronized with the LLE. Solidworks 3D Software was used to
mechanism design and analysis. The structure of LLE design was present the adjustable
mechanism to conform the demands and comfort of all users. To reach high torque, the
motor was combined with harmonic drive (HD). The stepping rehabilitation of bike
platform was designed with VR to provide interactive rehabilitation. In order to enhance
the authenticity of virtual images and actual conditions, installed the bike on a multi-axis
platform and C# program was used to compose bike road feedback to simulate the
dynamic system of bike to make it more realistic. Both walking and stepping
rehabilitation could bring different training effects to the patients who need to choose
their own rehabilitation for best results.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究目的 2
1.4 本文架構 3
第二章 文獻回顧與理論基礎 4
2.1 VR技術 4
2.1.1 虛擬實境 (Virtual reality, VR) 4
2.1.2 VR頭盔成像原理 10
2.1.3 人體立體視覺 14
2.1.4 交互原理 15
2.1.5 微機電陀螺儀 (MEMS gyroscope) 15
2.1.6 空間迷向 (Spatial Disorientation, SD) 16
2.1.7 虛擬實境平台 17
2.2 下肢外骨骼輔具 18
2.2.1 外骨骼輔具簡介 18
2.2.2 轉動慣量 19
2.2.3 平行軸定理 21
2.2.4 人體步態 22
2.3 復健自行車平台 22
2.3.1 自行車平台 22
2.3.2 腳踏式復健 24
第三章 研究方法與步驟 25
3.1 研究流程 25
3.2 虛擬影像設計 26
3.2.1 實驗機台設備 26
3.2.2 機台設備安裝 29
3.2.3 影像設計軟體 30
3.2.4 影像設計方法 31
3.2.5 漫步行走之虛擬影像 32
3.2.6 飛天自行車之虛擬影像 36
3.2.7 感測器校準 41
3.3 下肢外骨骼輔具 41
3.3.1 人體步態實驗 41
3.3.2 下肢外骨骼機構設計 43
3.3.3 下肢外骨骼驅動設計 45
3.3.4 可調式機構設計 47
3.3.5 安全性設計 47
3.3.6 扭力與慣性矩估測 48
3.3.7 馬達控制方法 50
3.4 自行車平台 50
3.4.1 自行車機構設計 50
3.4.2 自行車體動態系統 51
3.4.3 多軸體感平台 53
第四章 結果與討論 54
4.1 感測器校準 54
4.1.1 感測器校準結果分析 54
4.2 VR結合於下肢外骨骼結果分析 56
4.1.2 人體步態實驗結果 56
4.1.3 扭力與慣性模擬結果 59
4.1.4 馬達減速機選用 62
4.1.5 漫步行走之虛擬影像結果 64
4.1.6 VR影像與下肢外骨骼結合情形 67
4.3 VR結合於自行車平台結果分析 71
4.2.1 自行車平台機構 71
4.2.2 飛天自行車之VR影像結果 72
4.2.3 使用者踩踏力分析 82
4.2.4 VR自行車結合於多軸平台 83
第五章 結論與未來展望 88
5.1 結論 88
5.2 未來展望 89
參考文獻 90
[1]Parina, Hassani, “How Virtual Reality is changing the Face of Healthcare Industry,” Future Tech, Tech News, 2017.
[2]Pimentel, K., and Teixeira, K., “Virtual reality,” NY: McGraw-Hill, ISBN 978-0-8306-4065-2, 1993.
[3]Burdea, G., “Virtual reality systems and applications,” Electro''93 International Conference, 164, Short Course, Edison, NJ, April 28, 1993.
[4]林政宏,「深入虛擬實境VR」,碁峰資訊,1996年。
[5]賴怡臻,「運用沉浸式虛擬實境呈現華語文數位學習遊戲之創作與研究 - 以VR呈現《Chinese I Spy》遊戲為例」,國立台北科技大學互動設計系碩士論文,2017年。
[6]Ware, C., Arthur, K., and Booth, K.S., “Fishtank Virtual Reality,” INTERCHI''93 Technical Paper, Proceedings 37-42, 1993.
[7]Ware, C., and Balakrishnan, R., “Object Acquisition in VR displays: Lag and Frame Rate,” ACM Transactions on Computer Human Interaction, 1(4), 331-357, 1994.
[8]許之華,「VR運鏡方式對人體不適應之研究-以Google cardboard頭戴式3D眼鏡作為研究對象」,國立彰化師範大學資訊管理系碩士論文,2017年。
[9]周文忠,「虛擬實境之意義與應用」,資訊科學應用期刊,第一卷第一期121-127頁,2005年。
[10]P.M. Summitt, and M.J. Summitt, “Creating Cool 3D Web Worlds with VRML,” Foster Cily: IDG, 1996.
[11]程治,「網際網路與虛擬實境」,資訊與教育,vol. 50,pp. 9-15,1995年。
[12]Biocca, F., “Communication with Virtual Reality: Creating Space for Research,” Journal of Communication, vol. 42:4, pp.5-22, 1992.
[13]K.N. Ogle, “Researches in Binocular Vision,” Hafner Publishing Co .Ltd, 1964.
[14]Yu-Hsuan, Chang, “Application of Virtual Reality and Stereoscopic Panorama for Interior Design,” National Taiwan Normal University, Department of Computer Science and Information Engineering, 2017.
[15]Hiroshi, O., Linda, L., “Seeing double and depth with Wheatstone''s stereograms,” Perception, Vol. 36, pp. 1611-1623, 2007.
[16]Badcock, D. R., and Westheimer, G., “Spatial location and hyperacuity: the centre/surround localization contribution function has two substrates,” Vision Research 25, 1259-1267, 1985.
[17]Westheimer, G., “Spatial interaction in the domain of disparity signals in human stereoscopic vision,” J. Physiol. 370, 619-629, 1986.
[18]Woodward, J., “Virtual Reality and Its Potential Use in Special Education,” Cosmos Corporation, Washington, D.C., 1992.
[19]K.H. Chen, “Measurements and Analyses of MEMS Gyroscopes and Accelerometers,” Graduate Institute of Photonics and Optoelectronics National Taiwan University, 2010.
[20]Shih-Hsien Chiu, “Flight simulator evaluation of a novel warning device to minimize the risks of spatial disorientation,” National Cheng Kung University, Department of Information Management Institute of Information Management, 1993.
[21]Rupert, A. H., “An instrumentation solution for reducing spatial disorientation mishaps - A more "natural" approach to maintaining spatial orientation,” Engineering in Medicine and Biology Magazine, 19(2), 71-80, 2000.
[22]P. Bourke, “Calculating Stereo Pairs,” Retrieved December, Vol. 12, pp. 2006, 1999.
[23]Åstro̊m, K.j., Klein, R.E., Lennartsson, A., “Bicycle Dynamics and Control,” IEEE
Control Systems Magazine 25 (4), pp. 26–47, 2005.
[24]Kiusalaas, J., “Numerical Methods in Engineering with MATLAB,” Cambridge
University Press, 2005.
[25]P. Bourke, “Calculating Stereo Pairs,” Retrieved December, Vol. 12, pp. 2006, 1999.
[26]Fong-Jie Chen, “Study of Interactive Bicycle Simulator in Application of Virtual Reality,” Department of IME. Taipei Tech, 2007.
[27]Joyce Fung, Carol L. Richards, Francine Malouin, Bradford J. McFadyen, Anouk Lamontagne, “A Treadmill and Motion Coupled Virtual Reality System for Gait Training Post-Stroke,” CyberPsychology & Behavior, Vol. 9, no. 2, 2006.
[28]L. S. Chang, “Future mobility aids - robotic exoskeleton that exceeds the limits of the human body.” Cum Assistant Technology Research Center, 2012.
[29]Yoshiyuki, S., “Hybrid Assistive Limb Based on Cybernics,” Springer Tracts in Advanced Robotics, Vol. 66, pp. 25-34, 2011.
[30]Shinichiro, M., Aiko, O., Daisuke, N., Yoshitake, H., Koji, T., Hiroshi, K., and Yoshiyuki, S., “Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report,” Maeshima et al. BMC Neurology, 11:116, 2011.
[31]Hiroaki, K., and Yoshiyuki, S., “EMG-based Hybrid Assistive Leg for Walking Aid using Feedforward Controller,” ICCAS, pp. 190-193, 2001.
[32]“Advanced Action-Assisted Exoskeleton Robot Technology,” Industrial Technology Research Institute, 2016.
[33]C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, “Phys,” Rev. Lett., 75, 1687, 1995.
[34]Kaufman, KR., Hughes, C., Morrey, BF., Morrey, M., and An, KN., “Gait characteristics ofpatients with knee osteoarthritis,” Journal of Biomechanics, Vol. 34, pp. 907-915, 2001.
[35]Perry JP., “Gait analysis: Normal and Pathological Function. Thorofare,” NJ: Slack, 1992.
[36]Akio Kimura, “Rehabilitation Medicine Physician Handbook,” ISBN13: 9789, 2013.
[37]L.C. Shen, C.W. Chien, H.C. Cheng, C.T. Lin, “Development of three-dimensional chip stacking technology using a clamped through-silicon via interconnection,” Microelectronics Reliability, vol. 50, no. 4, pp. 489-497, 2010.
[38]Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, et al., “Virtual reality-augmented rehabilitation for patients following stroke,” Phys Ther; 82:898–915, 2002
[39]Barbeau H, Visintin M., “Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects,” Arch Phys Med Rehabil; 84: 1458–65, 2003.
[40]You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH, et al., “Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study,” Stroke; 36:1166–71, 2005
[41]Lam YS, Man DWK, Tam SF, Weiss PL., “Virtual reality training for stroke rehabilitation,” Neuro Rehabilitation, 21:245–53, 2006.
[42]Yen CL, Wang RY, Liao KK, Huang CC, and Yang YR., “Gait training induced change in corticomotor excitability in patients with chronic stroke” Neurorehabil Neural Repair, 2008.
[43]Silver KH, Macko RF, Forrester LW, Goldberg AP, and Smith GV., “Effects of aerobic treadmill training on gait velocity, cadence, and gait symmetry in chronic hemiparetic stroke: a preliminary report,” Neurorehabil Neural Repair; 14:65–71, 2000.
[44]Guruprasad Katti, Michele Stucchi, Kristin De Meyer, and Wim Dehaene, “Electrical modeling and characterization of through silicon via for three-dimensional ICs,” IEEE Transactions on Electron Devices, vol. 57, no. 1, 2010.
[45]High Tech Computer Corporation.
[46]Unity Documentation, “Blacksmith,” 2018.
[47]Unity Documentation, “Input for OpenVR controllers,” 2018.
[48]Maxon motor.
[49]Fapro Enterprise Corporation.
[50]H.C. Wu, “Body composition testing practice,” Chinese Culture University, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔