跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/04 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林冠龍
研究生(外文):Kuan-lung Lin
論文名稱:小零件組裝平台之設計與控制
論文名稱(外文):Design and Control of an Assembly Stage for Small Components
指導教授:王郁仁
指導教授(外文):Wang, Yu-Jen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:127
中文關鍵詞:組裝平台運動方程式壓電致動器三軸向定位平台十字定位
外文關鍵詞:Assembly stageTri-axis positioning stagePiezoelectric actuatorCross feature positionEquation of motion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
現今正處於邁向工業4.0普及化的時代,在生產線上將人力以自動化機器取代是未來的趨勢,能夠同時降低人力成本且帶來更高的生產效率,為了能夠使產線順利完成零件之組裝,需要機器視覺能夠精準地抓取目標位置,並搭配具有高精度及快速定位能力之機器手臂才能完成。因此本文將研究一具有高精度與快速之定位能力的組裝系統,並將其應用於小零件之組裝。
  本研究開發之組裝系統包含以十字特徵進行定位校準之機器視覺系統,並搭配長行程載台與三軸向壓電定位平台。藉由三維偵測儀拍攝取得零件之空間點雲座標資料,經電腦演算法與矩陣轉換公式進行運算,將相機座標系轉至固定座標系,並且以十字特徵判斷與目標位置之距離與旋轉角度差,為了因應小型零件之組裝,選用以壓電致動器構成之三軸向定位平台作為負責定位之機器手臂,其具有高精度、響應快與低耗能等特性,搭配機構設計使平移與旋轉運動皆穩定且保持高線性度,同時使用光學編碼器作為定位平台之位移感測器,最後將目標位置傳送到微控制器,根據光學編碼器回傳之位置訊號,利用PID控制器做定位平台之速度調變,使其能夠快速到達定位,並使用Z軸向之真空吸嘴進行吸取與放置零件,完成零件之組裝。本研究進而推導出此壓電定位平台之運動方程式,並透過模擬觀察其運動狀態。
  本研究設計之三軸向定位平台藉由雷射位移計測量其定位能力,實驗結果顯示此定位平台在工作佔空比為3%時,X軸向最小步進量為0.1 "μm" ,在工作佔空比為5%時,Y軸向最小步進量為0.1 "μm" ,在雙軸向定位平台之最大行程可達6mm,而在工作佔空比5%時,Z軸向旋轉運動能夠有最小之旋轉角度步進量0.02"°" ,由PID控制器完成之定位誤差為0.3 "μm" ,由此可完成小零件之組裝。
It is in the age of taking steps towards the popularization of industry 4.0. The replacement of human with robots on the production line is the trend of future. It does not only reduce the requirement of labor costs but also brings higher productivity. In order to make sure that production is assembled smoothly, machine vision for locating the target precisely and robotic arms having high precision and fast positioning ability are necessary. Thus, the research intends to develop an assembly system, possessing high accuracy and high efficiency, and applies it to complete assembly of production.
The assembly system consists of a machine vision using a cross feature to locate and calibrate target position, two long-stroke slide stages, and a tri-axis piezoelectric positioning stage. With the three-dimensional point data captured by 3D camera, camera coordinate system is calibrated to global coordinate system through analytical algorithm and matrix transformation, and the distance and rotation angle to the target position can be decided by using cross feature. For assembly of small components, tri-axis positioning stage based on piezoelectric actuator is chosen to be robotic arms, because of its high accuracy, rapid response, and low power consumption. Through mechanism design, translation and rotation have high stability and linearity. Using Optical encorder as position sensor, micro-controller receives position signal from it and excutes velocity modulation by PID controller to make it get to target position fast and stabily. Once the aligment is completed, vacuum nozzle is controlled to picks up and put the component to carry out the aseembly of components. The postioning stage uses friction force as driving force. Moreover, the equation of motion is derived and the result is presented by simulation to understand the motion behavior.
With the aid of a laser displacement positioner, the experiment result presents that the tri-axis positioning stage provides the stepping resolution of 0.1 "μm" on X-axis and Y-axis with duty ratio of 3% and 5%, and the rotation resolution of 0.02° with duty ratio of 5%. The maximum stroke of bi-axis positioning stage is 6 mm. The positioning error with PID controller is 0.3 "μm" . In the end, The assembly of small components is completed by this research.
摘要 i
目錄 iv
圖次 vi
表次 viii
符號說明 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 2
1.3.1 壓電致動器介紹 2
1.3.2 摩擦驅動控制 8
1.4 本文架構 12
第二章 三軸向定位平台與吸嘴致動器之設計 14
2.1 壓電致動器之設計 14
2.1.1 壓電致動器基本架構 14
2.1.2 壓電致動器分析 15
2.1.3 壓電致動器機構設計 18
2.2 三軸向定位平台之設計 19
2.2.1 雙軸向壓電定位平台機構設計 19
2.2.2 旋轉壓電定位平台機構設計 23
2.3 吸嘴致動器之設計 25
2.3 定位系統架設 28
第三章 摩擦驅動之定位平台運動研究 32
3.1 摩擦驅動之定位平台運動方程式 32
3.2摩擦驅動之定位平台運動模擬分析 44
3.2.1 氧化鋯之摩擦係數量測 44
3.2.2 以MATLAB進行動態模擬分析 47
第四章 驅動與定位控制系統建立 56
4.1驅動與定位控制電路介紹 56
4.2 零件定位辨識系統 60
4.2.1 建立三維偵測儀座標系與固定座標系之關係式 61
4.2.2 以十字特徵計算至目標位置之旋轉與平移量 65
4.3 控制系統架設 68
4.3.1 以PID控制器實現快速且精準之定位 70
4.3.2 控制系統流程 74
第五章 實驗與討論 76
5.1三軸向定位平台之定位能力 76
5.1.1 實驗架設 76
5.1.2 實驗結果與討論 77
5.2小零件組裝實驗 82
第六章 結論與未來展望 87
6.1結論 87
6.2未來展望 88
參考文獻 89
附錄 92
附件1-MATLAB計算壓定位平台運動方程式編碼 92
附件2-驅動控制系統電路圖 107
附件3-定位控制系統電路圖 108
附件4-PID控制器程式編碼 109
附件5-模擬PID控制器程式編碼 110
[1]H. B. Brown, P. M. Muir, A. A. Rizzi , M. C. Sensi and R. L. Hollis, “A Precision Manipulator Module for Assembly in A Minifactory Environment,” Intermational Conference on Intelligent Robots and Systems, vol. 2, pp. 1030-1035, 2001.
[2]楊捷, 以微米級步進式壓電致動器驅動之三軸向定位平台,碩士論文,國立中山大學機械與機電工程學系,2016。
[3]黃俊瑋,工件定位特徵辨識及陣列式組裝系統之研究,碩士論文,國立中山大學機械與機電工程學系,2016。
[4]M. Ueyama, M. Kuwama, and H. Nagata, “Lens Barrel Having a Piezoelectric Actuator for Moving Optical Elements,” U.S Patent, no. 5675444, 1997.
[5]S. Ueha, Y. Tomikawa, M. Kurosawa , and N. Nakamura, “Ultrasonic Motors Theory and Applications,” Clarendon Press, 1993.
[6]T. Maeno,“Recent Progress of Ultrasonic Motors in Japan,” The First International Workshop on Ultrasonic Motors and Actuators, 2005.
[7]H. Frayssignes and R. Briot, “Traveling Wave Ultrasonic Motor Coupling Effects in Free Stator,” Ultrasonic, vol. 41, no. 2, pp. 89-95, 2003.
[8]D. Koyama, Y. Wada, and K. Nakamura, “An Ultrasonic Air Pump Using an Acoustic Traveling Wave Along a Small Air Gap,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 57, no. 1, pp. 253-261, 2010.
[9]M. Guo, S. Dong, and B. Ren, “A Double-Mode Piezoelectric Single-Crystal Ultrasonic Micro-Actuator,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 57, no. 11, pp. 2596-2600, 2010.
[10]Z. Chen, X. Li, and J. Chen, ”A Square-Plate Ultrasonic Linear Motor Operating in Two Orthogonal First Bending Modes,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 60, no. 1, pp. 115-120, 2013.
[11]X. Hou, L. H. Pueh, and O. C. Jin, “Development and Numerical Characterization of a New Standing Wave Ultrasonic Motor Operating in the 30-40 kHz Frequency Range,” Ultrasonics, vol. 53, no. 5, pp. 928-934, 2013.
[12]Y. Shi and C. Zhao, “A New Standing-Wave-Type Linear Ultrasonic Motor Based on In-Plane modes,” Ultrasonics, vol. 51, no. 4, pp. 397-404, 2011.
[13]S.Y. He, W.S. Chen, and X. Tao, “Standing Wave Bi-directional Linearly Moving Ultrasonic Motor,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 45, no. 5, pp. 1133-1139, 1998.
[14]E. Vyshnevskyy, S. Kovalev, and W. Wischnewskiy, “A Novel, Single-Mode Piezoceramic Plate Actuator for Ultrasonic Linear Motors,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 52, no. 11, pp.2047-2053, 2005.
[15]Y, Liu, W. Chen, and X. Yang, “A T-shape Linear Piezoelectric Motor with Single Foot,” Ultrasonics, vol. 56, pp. 551-556, 2015.
[16]M. Aoyagi, F. Suzuki, and Y. Tomikawa, “High-Speed Thin Ultrasonic Spindle Motor and Its Application,” Japanese Journal of Applied Physics Part 1- Regular Papers Short Notes & Review Papers, vol.43, no. 58, pp. 2873-2878, 2004.
[17]W. Gao, S. Sato, and Y. Arai, “A Linear-Rotary Stage for Precision Positioning,” Precision Engineering-Journal of the International societies for Precision Engineering and Nanotechnology, vol.34, no. 2, pp.301-306, 2010.
[18]S. Tuncdemir, S. P. Ural, and B. Koc, “Design of Translation Rotary Ultrasonic Motor with Slanted Piezoelectric Ceramics,” Japanese Journal of Applied Physics, vol. 50, no. 2, 2011.
[19]M. Zhou, Z. Fan, and Z. Ma, “Design and Experimental Research of a Novel Stick-slip Type Piezoelectric Actuator,” Micromachines, vol. 8, no. 5, 2017.
[20]Y. Liu, S. Shi, C. Liu, “Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet,” Ultrasonics, vol. 84, pp. 81-86, 2018.
[21]J. Li, H. Huang, H. Zhao, “A Piezoelectric-Driven Linear Actuator by Means of Coupling Motion,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2458-2466, 2018.
[22]A.S. Kulkami and M.A. El-Sharkawi, “Intelligent Precision Position Control of Elastic Drive Systems,” IEEE Transactions on Energy Conversion, vol.16, no. 1, pp. 26-31, 2001.
[23]S.C. Kim and S.H. Kim, “A Precision Linear Actuator Using Piezoelectrically Driven Friction Force,” Mechatronics, vol.11, no. 8, pp.969-985, 2001.
[24]W. Panusittikom, M.C. Lee, and P.I. Ro, “Modeling and Sliding-Mode Control of Friction-Based Object Transport Using Two-Mode Ultrasonic Excitation,” IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 917-926, 2004.
[25]R. W. Horng and A.C. Lee, “Sliding Observer for Friction Compensation in a Linear-Motor-Driven Motion System,” Journal of the Chinese Society of Mechanical Engineers, vol.32, no. 1, pp. 67-78, 2011.
[26]S. E. Lyshevski, “Control of High-Precision Direct-drive Mechatronic Servos Tracking Control with Adaptive Friction Estimation and Compensation,” Mechatronics, vol.43, pp. 1-5, 2017.
[27]周卓明,壓電力學,全華科技圖書股份有限公司,1-9~1-10。
[28]http://140.134.32.129/edu/eleme/position/4-2-2.htm
[29]B. N.J. Persson, “Sliding Friction Physical Principles and Applications,” Springer Science & Business Media, pp. 102-109, 2000.
[30]R. C. Hibbeler, “Engineering Mechanics Statics,” Prentice Hall, pp.434-435, 2010.
[31]Dean Karnopp, “Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems,” J. Dyn. Sys., Meas., Control, vol. 107, no. 1, pp. 100-103, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top