跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 19:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴映燊
研究生(外文):Ying-Shen Lai
論文名稱:電容耦合電漿合成氧化聚萘應用於穿戴式呼吸感測器
論文名稱(外文):Capacitive-coupled plasma synthesized oxidized poly-naphthalene as the sensing material for wearable breath sensor
指導教授:林哲信
指導教授(外文):Che Hsin Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:105
中文關鍵詞:電漿輔助化學氣相沉積氧化聚萘薄膜多壁奈米碳管呼吸感測
外文關鍵詞:PECVDmulti-wall carbon nanotubesoxidized poly-naphthalenebreath detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用低汙染的電漿製程製作感測薄膜,結合帶有指叉狀電極的印刷電路板成為穿戴式的呼吸感測器。感測器所使用之薄膜是利用電漿輔助化學氣沉積技術,將萘進行縮化聚合反應包覆多壁奈米碳管,形成具有親水特性以及良好導電性能之複合感測薄膜。相較於傳統的芳香烴聚合方法,本研究使用電漿來提供萘聚合反應所需的質子,取代傳統的化學催化劑。因聚合反應是透過電漿中產生的質子來質子化萘分子並開始聚合反應,相較於傳統合成方法,不會有催化劑殘留的疑慮。另一方面,因為是透過化學氣相沉積的方式合成薄膜,此薄膜的尺度達到奈米等級,能夠透過控制電漿參數來決定目標厚度。此外,本研究探討了不同電漿功率以及製程時間對於薄膜的官能基組成以及化學結構的影響,找出最佳製程參數來進行後續呼吸感測應用。在複合薄膜的部分,本研究利用噴塗技術將分散於溶液中的多壁奈米碳管噴塗於指叉電極做為訊號傳導層以及薄膜的支撐結構,並同時探討了奈米碳管噴塗層數以及距離對電阻的影響。再進行氧化聚萘薄膜的沉積,使氧化聚萘能夠包覆碳管,完成複合薄膜的製作。接下來,使用選擇性測試以及循環測試來驗證感測感測器的可靠度,結果顯示,晶片不會被常見的有機揮發性氣體所影響,能夠對於水氣具有選擇性不會輕易受到其他有機氣體影響,並在重複性測試中,展現出良好的再現性。為了能更便利的應用感測晶片,本研究結合3D列印技術製作感測器卡匣,成功將晶片整合於呼吸面罩之中成為穿戴式呼吸感測器。最後,在訊號偵測方面,本研究使用交流電錶來量測感測器的電阻變化,透過電阻變化來得知使用者不同的呼吸行為。結果顯示,當使用者進行深淺的呼吸時,感測晶片對於連續且不同的呼吸行為量測到具識別性的呼吸波形,靈敏度約為4%,響應時間僅約為0.5~1.0 s。證實了本研究所開發的感測薄膜於呼吸行為的偵測具有相當大的潛力。
We present a wearable respiratory sensor based on the composite film synthesized by PECVD. The composite is composed by oxidized poly-naphthalene coating the multi-walled carbon nanotubes and deposited on the PCB interdigital electrode area. The composite sensing film not only has hydrophilic properties but also good electrical conductivity. The polymerization reaction is to protonate the naphthalene molecule through the proton generated in the plasma and start the polymerization reaction. There is no doubt that the catalyst remains in comparison with the conventional synthesis method. The OPN film have a nanometer dimension and excellent adhesion. To improve the sensor conductivity, the multi-walled Carbon Nanotubes dispersed in the solution were sprayed on the interdigital electrode in advance. The CNTs act as the film support structure and conducting signal layer. The effects of the number of layers sprayed and the distance on the impedance are also discussed. The sensor chip would be completed after the CNTs coated by oxidized poly-naphthalene during the plasma process. The selectivity test and the cycle test were used to verify the sensor reliability. The results showed that the sensor selective for moisture and had good sensitivity and repeatability. The sensor chip successfully integrated into the breathing mask by sensor cassettes manufacturing by 3D printing technology for people easy to use. An AC meter is used to measure the resistance change of the sensor, and the change in resistance is used to know the different breathing behavior of the user. The results show that when the user performs deep and normal breathing, it has the same trend as the resistance change exhibited by the sensor.
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
中英文符號對照表 xii
簡寫表 xiii
第一章 緒論 1
1.1 研究背景 1
1.1.1 呼吸作用簡介 2
1.1.2 呼吸行為的檢測 3
1.2 呼吸感測器架構以及材料 4
1.2.1 血氧濃度感測器 4
1.2.2 胸腔變化感測 5
1.2.3 呼吸氣流感測 7
1.3 奈米碳管特性 15
1.3.1 奈米碳管的合成 16
1.3.2 奈米碳管的應用與危害 17
1.4 芳香烴材料 18
1.4.1 多環芳香烴的合成與應用 19
1.5 研究動機與目的 23
1.6 論文架構 24
第二章 工作原理 25
2.1 電漿反應原理 25
2.1.1 電漿種類與特性 27
2.1.2 電漿輔助化學氣相沉積 33
2.1.3 以萘為來源之電漿合成反應 35
2.2 電漿合成感測薄膜 38
2.3 感測薄膜偵測呼吸 40
第三章 設計製作 43
3.1 實驗架構 43
3.2 感測器製程 45
3.2.1 感測晶片製作 45
3.2.2 感測器卡匣的設計製造 49
3.3 電漿光譜量測與接觸角量測架構 50
3.4 感測器性能檢測 51
第四章 實驗結果與討論 53
4.1 電漿特性分析 53
4.2 氧化聚萘特性分析 55
4.2.1 電漿功率與時間對膜厚的影響 56
4.2.2 電漿功率與時間對官能基組成影響 57
4.2.3 接觸角量測 61
4.2.4 X-射線繞射分析(X-ray diffraction, XRD) 62
4.2.5 熱重分析(Thermogravimetric analysis,TGA) 63
4.2.6 質譜儀分析(Mass spectrometry, MS) 64
4.2.7 X-射線光電子光譜分析(X-ray photoelectron spectroscopy, XPS) 66
4.3 CNTs噴塗參數對感測器影響 67
4.4 感測器效能分析 69
4.4.1 附著性測試 69
4.4.2 感測晶片效能測試 71
4.4.3 呼吸檢測 74
第五章 結論與未來展望 77
5.1 結論 77
5.2 未來展望 79
參考文獻 80
論文原創性報告 89
自述 90
[1] J. G. Betts, Anatomy and Physiology. OpenStax, 2014.
[2] T. Young, P. E. Peppard, and D. J. Gottlieb, "Epidemiology of obstructive sleep apnea: a population health perspective," American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 9, pp. 1217-1239, 2002.
[3] R. B. Berry, G. L. Koch, S. Trautz, and M. H. Wagner, "Comparison of respiratory event detection by a polyvinylidene fluoride film airflow sensor and a pneumotachograph in sleep apnea patients," Chest, vol. 128, no. 3, pp. 1331-1338, 2005.
[4] H. C. Liu, Y. J. Chen, Y. C. Lu, C. L. Wu, W. C. Huang, and J. T. Huang, " Monitoring apnea in the elderly by an electromechanical system with a carbon nanotube-based sensor," International Journal of Gerontology, vol. 7, no. 3, pp. 147-151, 2013.
[5] A. T. Shennan, M. S. Dunn, A. Ohlsson, K. Lennox, and E. M. Hoskins, "Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period," Pediatrics, vol. 82, no. 4, pp. 527-532, 1988.
[6] E. Bancalari, Neonatal Respiratory Therapy. Elsevier, 2018.
[7] C. Lourenço and C. Turner, "Breath analysis in disease diagnosis: methodological considerations and applications," Metabolites, vol. 4, no. 2, pp. 465-498, 2014.
[8] R. F. Machado, "Detection of lung cancer by sensor array analyses of exhaled breath," American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 11, pp. 1286-1291, 2005.
[9] R. Dixit, "Asthma and obstructive sleep apnea: More than an association!," Lung India: official organ of Indian Chest Society, vol. 35, no. 3, p. 191, 2018.
[10] R. B. Berry, "Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events," Journal of Clinical Sleep
81
Medicine, vol. 8, no. 05, pp. 597-619, 2012.
[11] S. K. Kundu, S. Kumagai, and M. Sasaki, "A wearable capacitive sensor for monitoring human respiratory rate," Japanese Journal of Applied Physics, vol. 52, no. 4S, p. 04CL05, 2013.
[12] M. Terasawa, S. Kumagai, and M. Sasaki, "Frequency-response-based analysis of respiratory sensor measuring capacitance built across skin," Japanese Journal of Applied Physics, vol. 55, no. 4S, p. 04EM13, 2016.
[13] Y. Wang, "Wearable and highly sensitive graphene strain sensors for human motion monitoring," Advanced Functional Materials, vol. 24, no. 29, pp. 4666-4670, 2014.
[14] T. Yamada, "A stretchable carbon nanotube strain sensor for human-motion detection," Nature Nanotechnology, vol. 6, no. 5, p. 296, 2011.
[15] M. Li, H. Li, W. Zhong, Q. Zhao, and D. Wang, "Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection," ACS Applied Materials & Interfaces, vol. 6, no. 2, pp. 1313-1319, 2014.
[16] C. L. Dai and M. C. Liu, "Complementary metal–oxide–semiconductor microelectromechanical pressure sensor integrated with circuits on chip," Japanese Journal of Applied Physics, vol. 46, no. 2R, p. 843, 2007.
[17] N. W. Hagood and A. von Flotow, "Damping of structural vibrations with piezoelectric materials and passive electrical networks," Journal of Sound and Vibration, vol. 146, no. 2, pp. 243-268, 1991.
[18] X. Le, L. Peng, J. Pang, Z. Xu, C. Gao, and J. Xie, "Humidity sensors based on AlN microcantilevers excited at high-order resonant modes and sensing layers of uniform graphene oxide," Sensors and Actuators B: Chemical, vol. 283, pp. 198-206, 2019.
[19] Y. Zhang, K. Yu, R. Xu, D. Jiang, L. Luo, and Z. Zhu, "Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor," Sensors and Actuators
82
A: Physical, vol. 120, no. 1, pp. 142-146, 2005.
[20] Z. Rittersma, "Recent achievements in miniaturised humidity sensors—a review of transduction techniques," Sensors and Actuators A: Physical, vol. 96, no. 2-3, pp. 196-210, 2002.
[21] A. R. Ralston, J. A. Tobin, S. S. Bajikar, and D. D. Denton, "Comparative performance of linear, cross-linked, and plasma-deposited PMMA capacitive humidity sensors," Sensors and Actuators B: Chemical, vol. 22, no. 2, pp. 139-147, 1994.
[22] C. H. Chen and C. H. Lin, "A novel method to fabricate ion-doped microporous polyimide structures for ultra-high sensitive humidity sensing," Sensors and Actuators B: Chemical, vol. 135, no. 1, pp. 276-282, 2008.
[23] S. Kanaparthi, "Pencil‐drawn Paper‐based Non‐invasive and Wearable Capacitive Respiration Sensor," Electroanalysis, vol. 29, no. 12, pp. 2680-2684, 2017.
[24] M. Anbia and S. E. M. Fard, "Humidity sensing properties of Ce-doped nanoporous ZnO thin film prepared by sol-gel method," Journal of Rare Earths, vol. 30, no. 1, pp. 38-42, 2012.
[25] Y. He, "Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning," Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 98-102, 2010.
[26] M. Yang, Y. Li, X. Zhan, and M. Ling, "A novel resistive‐type humidity sensor based on poly (p‐diethynylbenzene)," Journal of Applied Polymer Science, vol. 74, no. 8, pp. 2010-2015, 1999.
[27] Q. Y. Tang, Y. Chan, and K. Zhang, "Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films," Sensors and Actuators B: Chemical, vol. 152, no. 1, pp. 99-106, 2011.
[28] Z. Hou, B. Cai, and D. Xu, "Application of carbon nanotubes to human breath
83
dynamics characterization," Applied physics letters, vol. 89, no. 5, p. 053105, 2006.
[29] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, p. 56, 1991.
[30] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, no. 6430, p. 603, 1993.
[31] T. Ebbesen, H. Lezec, H. Hiura, J. Bennett, H. Ghaemi, and T. Thio, "Electrical conductivity of individual carbon nanotubes," Nature, vol. 382, no. 6586, p. 54, 1996.
[32] 韋進全韋進全, 奈米碳管巨觀體奈米碳管巨觀體-物理與化學特性物理與化學特性. 五南出版社五南出版社, 2009.
[33] A. Peigney, P. Coquay, E. Flahaut, R. E. Vandenberghe, E. De Grave, and C. Laurent, "A study of the formation of single-and double-walled carbon nanotubes by a CVD method," The Journal of Physical Chemistry B, vol. 105, no. 40, pp. 9699-9710, 2001.
[34] A. Rinzler, "Large-scale purification of single-wall carbon nanotubes: process, product, and characterization," Applied Physics A: Materials Science & Processing, vol. 67, no. 1, pp. 29-37, 1998.
[35] O. Varghese, P. Kichambre, D. Gong, K. Ong, E. Dickey, and C. Grimes, "Gas sensing characteristics of multi-wall carbon nanotubes," Sensors and Actuators B: Chemical, vol. 81, no. 1, pp. 32-41, 2001.
[36] E. Llobet, "Gas sensors using carbon nanomaterials: A review," Sensors and Actuators B: Chemical, vol. 179, pp. 32-45, 2013.
[37] K. Balasubramanian and M. Burghard, "Electrochemically functionalized carbon nanotubes for device applications," Journal of Materials Chemistry, vol. 18, no. 26, pp. 3071-3083, 2008.
[38] C. Cao, C. Hu, L. Fang, S. Wang, Y. Tian, and C. Pan, "Humidity sensor based on multi-walled carbon nanotube thin films," Journal of Nanomaterials, vol. 2011, p. 5, 2011.
[39] K. Donaldson, V. Stone, C. Tran, W. Kreyling, and P. J. Borm, "Nanotoxicology,"
84
BMJ vol. 61, no. 9, pp. 727-728, 2004.
[40] J. P. Ryman-Rasmussen, E. W. Tewksbury, O. R. Moss, M. F. Cesta, B. A. Wong, and J. C. Bonner, "Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma," American Journal of Respiratory Cell and Molecular Biology, vol. 40, no. 3, pp. 349-358, 2009.
[41] C. A. Poland, "Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study," Nature Nanotechnology, vol. 3, no. 7, p. 423, 2008.
[42] J. P. Ryman-Rasmussen, "Inhaled carbon nanotubes reach the subpleural tissue in mice," Nature Nanotechnology, vol. 4, no. 11, p. 747, 2009.
[43] J. Bove and J. Arrigo, "Formation of polycyclic aromatic hydrocarbon via gas phase benzyne," Chemosphere, vol. 14, no. 1, pp. 99-101, 1985.
[44] B. S. Haynes and H. G. Wagner, "Soot formation," Progress in Energy and Combustion Science, vol. 7, no. 4, pp. 229-273, 1981.
[45] J. Bittner and J. Howard, "Composition profiles and reaction mechanisms in a near-sooting premixed benzene/oxygen/argon flame," presented at the Symposium (International) on Combustion, 1981.
[46] M. Frenklach, D. W. Clary, W. C. Gardiner Jr, and S. E. Stein, "Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene," presented at the Symposium (International) on Combustion, 1985.
[47] P. Kovacic and F. W. Koch, "Coupling of naphthalene nuclei by Lewis acid catalyst—oxidant1," The Journal of Organic Chemistry, vol. 30, no. 9, pp. 3176-3181, 1965.
[48] I. Mochida, K. Shimizu, Y. Korai, Y. Sakai, and S. Fujiyama, "Direct preparation of mesophase pitch from naphthalene by the aid of HF/BF3," Chemistry Letters, vol. 18, no. 11, pp. 1893-1896, 1989.
[49] I. Mochida, K. Shimizu, Y. Korai, H. Otsuka, Y. Sakai, and S. Fujiyama, "Preparation
85
of mesophase pitch from aromatic hydrocarbons by the aid of HFBF3," Carbon, vol. 28, no. 2-3, pp. 311-319, 1990.
[50] P. Y. Yang, H. Y. Chen, S. P. Ju, C. L. Chang, G. S. Leu, and C. H. Lin, "Catalytic polymerization of naphthalene by HF/BF3super acid: an ab initio density functional theory study," Physical Chemistry Chemical Physics, vol. 20, no. 36, pp. 23311-23319, 2018.
[51] 楊博宇楊博宇, 利用密度泛函理論與動態蒙地卡羅探討氫氟酸利用密度泛函理論與動態蒙地卡羅探討氫氟酸/三氟化硼催化萘聚合三氟化硼催化萘聚合之催化機制與反應動力學研究之催化機制與反應動力學研究. 機械與機電工程學系機械與機電工程學系研究所研究所 , 中山大學中山大學, 2018.
[52] I. Langmuir, "Oscillations in ionized gases," Proceedings of the National Academy of Sciences of the United States of America, vol. 14, no. 8, p. 627, 1928.
[53] 葉超葉超, 低氣壓低溫等離子體診斷原理低氣壓低溫等離子體診斷原理. 科學出版社科學出版社, 2010.
[54] 葛袁靜葛袁靜, 等離子體:科學技術及其在工業中的應用等離子體:科學技術及其在工業中的應用. 中國輕工業出版社中國輕工業出版社, 2011.
[55] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, 1998.
[56] J. R. Roth, Industrial plasma engineering, 1 ed. Industrial Plasma Engineering: CRC press, 1995.
[57]R. K. Marcus and J. A. Broekaert, Glow discharge plasmas in analytical spectroscopy. Wiley Online Library, 2003.
[58] K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, and M. Hori, "Vertical growth of carbon nanowalls using RF plasma-enhanced chemical vapor deposition," Diamond and related materials, vol. 14, no. 3-7, pp. 831-834, 2005.
[59] A. Okita, "Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas," Carbon, vol. 45, no. 7, pp. 1518-1526, 2007.
[60] E. Vassallo, L. Laguardia, M. Catellani, A. Cremona, F. Dellera, and F. Ghezzi, "Characterization of poly (3‐methylthiophene)‐like films produced by plasma
86
polymerization," Plasma Processes and Polymers, vol. 4, no. S1, pp. S801-S805, 2007.
[61] M. Yamaguchi, A. Tanaka, and T. Suzuki, "A support film of plasma-polymerized naphthalene for electron microscopy: method of preparation and application," Microscopy, vol. 41, no. 1, pp. 7-13, 1992.
[62] M. Yamaguchi, T. Aoyama, N. Yamada, and H. Chibana, "Quantitative measurement of hydrophilicity/hydrophobicity of the plasma-polymerized naphthalene film (super support film) and other support films and grids in electron microscopy," Microscopy, vol. 65, no. 5, pp. 444-450, 2016.
[63] C. C. Chang, Y. H. Chang, K. C. Hwang, J. H. Jou, and A. C. M. Yang, "One‐step fabrication of π‐conjugated polymer thin films from naphthalenes via plasma polymerization for efficient optoelectronic devices: white polymer light‐emitting diodes," Plasma Processes and Polymers, vol. 8, no. 3, pp. 215-223, 2011.
[64] Z. Wu, J. Wang, J. Han, S. Yao, S. Xu, and P. Martin, "Naphthalene decomposition by dielectric barrier discharges at atmospheric pressure," IEEE Transactions on Plasma Science, vol. 45, no. 1, pp. 154-161, 2016.
[65] P. Diomede, M. Capitelli, and S. Longo, "Effect of discharge voltage on capacitively coupled, parallel plate RF hydrogen plasmas," Plasma Sources Science and Technology, vol. 14, no. 3, p. 459, 2005.
[66] V. Skalyga, "High current proton source based on ECR discharge sustained by 37.5 GHz gyrotron radiation," Journal of Instrumentation, vol. 7, no. 10, p. P10010, 2012.
[67] I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, "Composites with carbon nanotubes and graphene: An outlook," Science, vol. 362, no. 6414, pp. 547-553, 2018.
[68] A. Yu, "Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix," Composites Science and Technology, vol. 66, no. 9, pp. 1190-1197, 2006.
87
[69] K. P. Yoo, L. T. Lim, N. K. Min, M. J. Lee, C. J. Lee, and C. W. Park, "Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films," Sensors and Actuators B: Chemical, vol. 145, no. 1, pp. 120-125, 2010.
[70] M. J. Lee, H. P. Hong, K. H. Kwon, C. W. Park, and N. K. Min, "Fast-speed, high-sensitivity polyimide humidity sensors with superhydrophilic carbon nanotube network electrodes," Sensors and Actuators B: Chemical, vol. 185, pp. 97-104, 2013.
[71] R. Pati, Y. Zhang, S. K. Nayak, and P. M. Ajayan, "Effect of H2O adsorption on electron transport in a carbon nanotube," Applied Physics Letters, vol. 81, no. 14, pp. 2638-2640, 2002.
[72] J. Melcher, Y. Deben, and G. Arlt, "Dielectric effects of moisture in polyimide," IEEE Transactions on Electrical Insulation, vol. 24, no. 1, pp. 31-38, 1989.
[73] Y. Noriah, N. H. Saad, M. Nabipoor, and S. Sulaiman, "Ultra-sensitive breath sensor device for sleep disorder monitoring and clinical studying," Materials Science Forum, vol. 846, pp. 484-489, 2016.
[74] H. Liu, X. Chen, D. Xu, Z. Hou, and Y. Zhang, "Microfabricated breath sensor based on carbon nanotubes for respiration monitoring," presented at the 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009.
[75] X. Chen, "A breath sensor using carbon nanotubes operated by field effects of polarization and ionization," Sensors and Actuators A: Physical, vol. 158, no. 2, pp. 328-334, 2010.
[76] O. V. Kharissova, B. I. Kharisov, and E. G. de Casas Ortiz, "Dispersion of carbon nanotubes in water and non-aqueous solvents," Royal Society of Chemistry Advances, vol. 3, no. 47, pp. 24812-24852, 2013.
[77] P. Laboratory, "NIST::Atomic Spectra Database," U. National Institute of Standards and Technology, Ed., 5.6 ed, 2018.
[78] T. Novikova, B. Kalache, P. Bulkin, K. Hassouni, W. Morscheidt, and P. Roca i
88
Cabarrocas, "Numerical modeling of capacitively coupled hydrogen plasmas: Effects of frequency and pressure," Journal of Applied Physics, vol. 93, no. 6, pp. 3198-3206, 2003.
[79] E. Abdel-Fattah and O. F. Farag, "Alpha to gamma mode transition in hydrogen capacitive radio-frequency discharge," Canadian Journal of Physics, vol. 91, no. 12, pp. 1062-1067, 2013.
[80] M. Koos, M. Veres, M. Füle, and I. Pocsik, "Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon," Diamond and Related Materials, vol. 11, no. 1, pp. 53-58, 2002.
[81] S. Louh, I. C. Leu, and M. H. Hon, "Preparation and characterization of plasma deposited para-xylene aC: H films with low dielectric constant," Diamond and Related Materials, vol. 14, no. 3-7, pp. 1005-1009, 2005.
[82] C. Uldry and J. W. Fitting, "Maximal values of sniff nasal inspiratory pressure in healthy subjects," Thorax, vol. 50, no. 4, pp. 371-375, 1995.
電子全文 電子全文(網際網路公開日期:20240812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top