跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 17:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高蘊筑
研究生(外文):Yun-Zhu Kao
論文名稱:以氧化石墨烯搭配化混與過濾處理水中無機矽及有機藥品污染物
論文名稱(外文):Using graphene oxide during coagulation and filtration for removal of inorganic silicon and organic pharmaceutical in wastewaters
指導教授:陳威翔陳威翔引用關係
指導教授(外文):Wei-Hsiang Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:128
中文關鍵詞:二甲基亞硝胺氧化石墨烯化學混凝二甲雙胍研磨廢水
外文關鍵詞:N-NitrosodimethylamineGraphene oxideMetforminCoagulationGrinding wastewaterSilicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
晶圓半導體製程中產生之研磨廢水含有大量細小矽顆粒,常造成水中懸浮微粒濃度升高且不易沉降;民生污水中的新興藥品污染物亦為近年受到關注之環境議題。本研究針對含矽研磨廢水,使用化學混凝前處理技術,提高水中矽顆粒粒徑大小,再配合後段過濾處理如燭式過濾、薄膜過濾、或離心技術等,將水中已形成大粒徑之矽顆粒去除,有效回收切割研磨廢水中矽渣並提高水處理通量。本研究以實場研磨廢水為對象進行一個月採樣2次,再經由瓶杯試驗,找出最佳操作條件。結果顯示,在前處理化學混凝程序中,使用硫酸鐵為添加藥劑,最佳操作條件為100 mg/L 添加濃度、反應pH 7.0、並控制適當鹼度,水中顆粒直徑在處理過後可由原水中幾十到幾百奈米範圍上升至前處理後2,064~7,132 nm之間;在後段過濾處理方面,不論使用離心、薄膜、或燭式過濾,皆可有效將水中已形成大粒徑之矽顆粒去除(出流水矽濃度在5 mg/L以下)。若在過濾前增加沉澱步驟,對離心或薄膜處理效果幫助有限但可能降低操作負荷;若以燭式過濾為主,額外的沉澱步驟可能延長養膜時間並降低出流水品質。整體而言,化學混凝前處理搭配燭式過濾之廢水處理系統可有效處理無藥研磨含矽廢水,污泥含水率在40%以下,污泥矽含量約50%以上。
在藥品處理方面,混凝程序為污水與淨水處理常見程序,氧化石墨烯為去除水中污染物之新穎吸附材料。本研究以中山大學污水廠放流水為對象,探討於化混程序中添加氧化石墨烯含鐵複合物S2.5去除水中新興污染物metformin之可行性。研究結果顯示當S2.5劑量為60 mg時,其metformin去除率為47.4 %;當pH 範圍為8時,metformin去除率則為51.2 %,但可同時觀察到水中NDMA生成潛勢增加為16.0 ng/L。從以上結果得知,使用此技術組合在中性範圍(如pH 6-8)可去除水中約50% metformin濃度。
The grinding wastewater produced during manufacture of semiconductor contains a large amount of fine particles, which often causes the concentration of suspended particles in the water to rise and is not easy to settle,increasing the difficulty and cost of the following treatment technologies. The pharmaceutical pollution is also becoming an important environmental issues in these decades. This study aimed at the silicon-containing grinding wastewater, using chemical coagulation pretreatment technology to increase the size of the silicon particles, followed by the subsequent filtration treatment such as candle filtration, membrane filtration, or centrifugation, etc., to remove those particles with a larger size from the water. The particles are removed, and the slag residue and grinding wastewater is effectively recovered and the water flux is increased. The results showed that in the pretreatment during coagulation by using ferric sulphate as the additive,the optimal operating conditions included a dosage of 100 mg/L, a reaction pH of 7.0, and an appropriate alkalinity controlled. The diameter of particles were efficiently increased after treatment. The size range arose from tens to hundreds of nanometers to between 2,064 and 7,132 nm after pretreatment.In the latter filtration, regardless of the use of centrifugation, membrane filtration, or candle filtration, it is effective to remove large particle size particles in water.The removal was effective as the effluent silicon concentration was below 5 mg/L. If precipitation was applied before filtration, the effect of centrifugation or membrane treatment seems to be limited however,the operational loading of the following steps may be reduced. With the candle filtration being considered, the additional precipitation was a plus for particle removal by increasing the lifetime of the membrane and enhancing the quality of the treated water. Overall, the coagulation pretreatment with the candle filtration effectively treated the silicon-containing wastewater. The recovery of silicon from the sludge is another advantage of this technology, as the sludge moisture content was below 40% and the silicon content was about 50%.
As the pharmaceutical treatment, coagulation is also a common technology for municipal wastewater and drinking water treatment. Graphene oxide is a promising adsorbent for removing pollutants from water. This study also explores the feasibility of adding graphene oxide-iron oxide composite S2.5 to remove metformin, a pharmaceutical and an emerging pollutant during coagulation for treating the sewage from National Sun Yat-sen University. The results showed that when the S2.5 does was 60 mg, the metformin removal rate was 47.4%. When the pH was 8, the removal rate was 51.2%, and the NDMA formation potential was 16.0 ng/L. It was found that metformin in the water could be partially removed (~50%)at neutral pHs (e.g., pH 6-10).
論文審定書 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 化學機械研磨廢水 5
2.1.1 二氧化矽 5
2.1.2 化學機械研磨廢水處理技術 9
2.1.3 混凝原理及機制 13
2.1.3.1 混凝機制 14
2.2 消毒副產物(Disinfection by-product,DBP) 17
2.3 亞硝胺類化合物(N-nitrosamine) 19
2.3.1 亞硝胺物化特性 20
2.3.2 管制規範 22
2.3.3 生成途徑與反應機制 24
2.3.4 亞硝胺前驅物 29
2.4 藥品及個人保健用品 30
2.4.1 藥品及個人保健用品之流佈 31
2.4.2 二甲雙胍(Metformin) 32
2.4.3 藥品及個人保健用品處理技術 34
2.5 氧化石墨烯 36
第三章 研究方法 37
3.1 研究架構與流程 37
3.2 實驗材料 39
3.2.1 氧化石墨烯(GO)水溶液製備 39
3.2.2 氧化石墨烯(GO)-四氧化三鐵複合材料製備 39
3.3 實驗藥品與儀器設備 40
3.3.1 分析藥品 40
3.3.2 分析儀器與設備 42
3.4 實驗方法與設計 44
3.4.1 水質項目與分析方法 44
3.4.2 瓶杯試驗 45
3.4.3有價微粒回收之分離技術 46
3.4.4 藥品前處理 47
3.4.5 亞硝胺前處理 49
3.5 品質保證與品質管理(QA/QC) 51
3.5.1 偵測極限及回收率校正 51
第四章 結果與討論 52
4.1 建立無機切割研磨廢水之化學混擬最佳操作條件 52
4.1.1 無機薄膜濃縮與原廢水濃度分析 52
4.1.2 前處理杯瓶試驗結果 53
4.2 建立矽渣處理回收系統最佳化操作條件 64
4.2.1 離心過濾系統 64
4.2.2 薄膜過濾系統 65
4.2.3 燭式過濾系統 66
4.3 添加含鐵氧化石墨烯複合材料對於水中Metformin濃度之影響 69
4.3.1 添加劑量以及pH影響S2.5吸附藥品實驗結果 69
4.3.2 化混系統中添加氧化石墨烯複合材料S2.5之影響 74
4.4 化混過程添加氧化石墨烯複合材料對Metformin的NDMA生成潛勢之影響 75
4.5 不同背景水體化混過程添加氧化石墨烯複合材料之metformin去除差異 77
第五章 結論與建議 79
5.1 結論 79
5-2 建議 80
參考文獻 82
附錄 89
Acero JL, Benitez FJ, Real FJ, Teva F. Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent. Chemical Engineering Journal 2012; 210: 1-8.
Andrzejewski P, Kasprzyk-Hordern B, Nawrocki J. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters. Water Research 2008; 42: 863-870.
Beluci NDL, Mateus GAP, Miyashiro CS, Homem NC, Gomes RG, Fagundes-Klen MR, et al. Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Science of the Total Environment 2019; 664: 222-229.
Benjamin M. Water Chemistry: McGraw-Hill Companies, 2002.
Benotti MJ, Brownawell BJ. Distributions of pharmaceuticals in an urban estuary during both dry- and wet-weather conditions. Environmental Science & Technology 2007; 41: 5795-5802.
Blair BD, Crago JP, Hedman CJ, Klaper RD. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 2013; 93: 2116-2123.
Bond T, Huang J, Templeton MR, Graham N. Occurrence and control of nitrogenous disinfection by-products in drinking water - A review. Water Research 2011; 45: 4341-4354.
Borikar D, Mohseni M, Jasim S. Evaluations of conventional, ozone and UV/H2O2 for removal of emerging contaminants and THM-FPs. Water Quality Research Journal of Canada 2015; 50: 140-151.
Briones RM, Sarmah AK, Padhye LP. A global perspective on the use, occurrence, fate and effects of anti-diabetic drug metformin in natural and engineered ecosystems. Environmental Pollution 2016; 219: 1007-1020.
CalEPA. Public Health Goals for Chemicals in Drinking Water: N-Nitrosodimethylamine, 2006.
Canada H. Guidelines for Canadian Drinking Water Quality, 2011.
Chabot V, Higgins D, Yu AP, Xiao XC, Chen ZW, Zhang JJ. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy & Environmental Science 2014; 7: 1564-1596.
Choi J, Duirk SE, Valentine RL. Mechanistic studies of N-nitrosodimethylamine (NDMA) formation in chlorinated drinking water. Journal of Environmental Monitoring 2002; 4: 249-252.
Choi JH, Valentine RL. N-nitrosodimethylamine formation hy free-chlorine-enhanced nitrosation of dimethylamine. Environmental Science & Technology 2003; 37: 4871-4876.
Chu KH, Al-Hamadani YAJ, Park CM, Lee G, Jang M, Jang A, et al. Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: A review. Chemical Engineering Journal 2017; 327: 629-647.
Delhiraja K, Vellingiri K, Boukhvalov DW, Philip L. Development of Highly Water Stable Graphene Oxide-Based Composites for the Removal of Pharmaceuticals and Personal Care Products. Industrial & Engineering Chemistry Research 2019; 58: 2899-2913.
Farre MJ, Jaen-Gil A, Hawkes J, Petrovic M, Catalan N. Orbitrap molecular fingerprint of dissolved organic matter in natural waters and its relationship with NDMA formation potential. Science of the Total Environment 2019; 670: 1019-1027.
Fatta-Kassinos D, Meric S, Nikolaou A. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and Bioanalytical Chemistry 2011; 399: 251-275.
Gao Y, Li Y, Zhang L, Huang H, Hu JJ, Shah SM, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science 2012; 368: 540-546.
Gomez-Canela C, Pueyo V, Barata C, Lacorte S, Marce RM. Development of predicted environmental concentrations to prioritize the occurrence of pharmaceuticals in rivers from Catalonia. Science of the Total Environment 2019; 666: 57-67.
Gushgari AJ, Halden RU, Venkatesan AK. Occurrence of N-nitrosamines in US freshwater sediments near wastewater treatment plants. Journal of Hazardous Materials 2017; 323: 109-115.
Harijan DKL, Chandra V. Magnetite/graphene/polyaniline composite for removal of aqueous hexavalent chromium. Journal of Applied Polymer Science 2016; 133.
Hinneh KDC, El Hanafi A, He K, Kosaka K, Echigo S, Asada Y, et al. Formation of N-nitrosodimethylamine by chloramination of anthropogenic nitrogenous compounds with dimethylamine monitored by Japanese water authorities. Journal of Hazardous Materials 2019; 367: 620-628.
Hu XJ, Liu YG, Zeng GM, Wang H, Hu X, Chen AW, et al. Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets. Journal of Colloid and Interface Science 2014; 426: 213-220.
Hua FL, Tsang YF, Chua H. Progress of water pollution control in Hong Kong. Aquatic Ecosystem Health & Management 2008; 11: 225-229.
Hundal RS, Inzucchi SE. Metformin - New understandings, new uses. Drugs 2003; 63: 1879-1894.
IARC. IARC (International Agency for Research on Cancer) AgentsClassified by the IARC Monographs, 2017.
Joss A, Zabczynski S, Gobel A, Hoffmann B, Loffler D, McArdell CS, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research 2006; 40: 1686-1696.
Kim M, Guerra P, Shah A, Parsa M, Alaee M, Smyth SA. Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant. Water Science and Technology 2014; 69: 2221-2229.
Konkena B, Vasudevan S. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pK(a) Measurements. Journal of Physical Chemistry Letters 2012; 3: 867-872.
Kosma CI, Lambropoulou DA, Albanis TA. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Science of the Total Environment 2014; 466: 421-438.
Kosma CI, Lambropoulou DA, Albanis TA. Comprehensive study of the antidiabetic drug metformin and its transformation product guanylurea in Greek wastewaters. Water Research 2015; 70: 436-448.
Krasner SW, Mitch WA, McCurry DL, Hanigan D, Westerhoff P. Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review. Water Research 2013; 47: 4433-4450.
Kumar R, Sarmah AK, Padhye LP. Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train. Journal of Environmental Management 2019; 233: 649-659.
Lee WN, Huang CH, Zhu GX. Analysis of 40 conventional and emerging disinfection by-products in fresh-cut produce wash water by modified EPA methods. Food Chemistry 2018; 256: 319-326.
Lin AYC, Lin CF, Tsai YT, Lin HHH, Chen J, Wang XH, et al. Fate of selected pharmaceuticals and personal care products after secondary wastewater treatment processes in Taiwan. Water Science and Technology 2010; 62: 2450-2458.
Liu YD, Zhong RG. Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study. Journal of Hazardous Materials 2017; 321: 362-370.
Luh J, Marinas BJ. Bromide Ion Effect on N-Nitrosodimethylamine Formation by Monochloramine. Environmental Science & Technology 2012; 46: 5085-5092.
Mian HR, Hu GJ, Hewage K, Rodriguez MJ, Sadiq R. Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: A critical review. Water Research 2018; 147: 112-131.
Mitch WA, Sedlak DL. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environmental Science & Technology 2002; 36: 588-595.
Nawrocki J, Andrzejewski P. Nitrosamines and water. Journal of Hazardous Materials 2011; 189: 1-18.
Ngoc Han T, Reinhard M, Gin KY-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research 2018; 133: 182-207.
Oosterhuis M, Sacher F, ter Laak TL. Prediction of concentration levels of metformin and other high consumption pharmaceuticals in wastewater and regional surface water based on sales data. Science of the Total Environment 2013; 442: 380-388.
Padhye LP, Hertzberg B, Yushin G, Huang CH. N-Nitrosamines Formation from Secondary Amines by Nitrogen Fixation on the Surface of Activated Carbon. Environmental Science & Technology 2011; 45: 8368-8376.
Plewa MJ, Richardson SD. Disinfection By-Products in Drinking Water, Recycled Water and Wastewater: Formation, Detection, Toxicity and Health Effects: Preface. Journal of Environmental Sciences 2017; 58: 1-1.
Radjenovic J, Petrovic M, Barcelo D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research 2009; 43: 831-841.
Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HMN. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environment International 2019; 122: 52-66.
Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research-Reviews in Mutation Research 2007; 636: 178-242.
Santos L, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barcelo D, et al. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. Science of the Total Environment 2013; 461: 302-316.
Scheurer M, Michel A, Brauch HJ, Ruck W, Sacher F. Occurrence and fate of the antidiabetic drug metformin and its metabolite guanylurea in the environment and during drinking water treatment. Water Research 2012; 46: 4790-4802.
Scheurer M, Sacher F, Brauch HJ. Occurrence of the antidiabetic drug metformin in sewage and surface waters in Germany. Journal of Environmental Monitoring 2009; 11: 1608-1613.
Schmidt CK, Brauch HJ. N,N-dimethosulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environmental Science & Technology 2008; 42: 6340-6346.
Schwarzenbach RP, Gschwend PM, Imboden DM. Environmental Organic Chemistry. New Jersey, U.S.A.: John Wiley & Sons, Inc., 2003.
Sgroi M, Vagliasindi FGA, Snyder SA, Roccaro P. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal. Chemosphere 2018; 191: 685-703.
Sharma VK, Nautiyal V, Goel KK, Sharma A. Assessment of Thermal Stability of Metformin Hydrochloride. Asian Journal of Chemistry 2010; 22: 3561-3566.
Shen R, Andrews SA. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Research 2011; 45: 944-952.
Shraim A, Diab A, Alsuhaimi A, Niazy E, Metwally M, Amad M, et al. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arabian Journal of Chemistry 2017; 10: S719-S729.
Singh DP, Herrera CE, Singh B, Singh S, Singh RK, Kumar R. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Materials Science & Engineering C-Materials for Biological Applications 2018; 86: 173-197.
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007; 45: 1558-1565.
Tardif R, Catto C, Haddad S, Simard S, Rodriguez M. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools. Environmental Research 2016; 148: 411-420.
Tolosana-Moranchel A, Manassero A, Satuf ML, Alfano OM, Casas JA, Bahamonde A. Influence of TIO2-rGO optical properties on the photocatalytic activity and efficiency to photodegrade an emerging pollutant. Applied Catalysis B-Environmental 2019; 246: 1-11.
Trautwein C, Berset JD, Wolschke H, Kummerer K. Occurrence of the antidiabetic drug Metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle. Environment International 2014; 70: 203-212.
USEPA. USEPA Integrated Risk Information System (IRIS) Database. 2013. U.S. Environmental Protection Agency, 2013.
USEPA. Six-Year Review 3 Technical Support Document for Nitrosamines, 2016a.
USEPA. USEPA Integrated Risk Information System (IRIS) Database. 2016. U.S. Environmental Protection Agency, 2016b.
Uzun H, Kim D, Karanfil T. Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide. Chemosphere 2019; 216: 224-233.
Von Gunten U, Salhi E, Schmidt CK, Arnold WA. Kinetics and Mechanisms of N-Nitrosodimethylamine Formation upon Ozonation of N,N-Dimethylsulfamide-Containing Waters: Bromide Catalysis. Environmental Science & Technology 2010; 44: 5762-5768.
Wang YF, Huang HO, Wei XM. Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes. Chemical Engineering Journal 2018; 333: 66-75.
WHO. Guidelines for Drinking-Water Quality, 4th ed, 2011.
Xu MJ, Huang HT, Li N, Li F, Wang DH, Luo Q. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotoxicology and Environmental Safety 2019; 175: 289-298.
Yang L, Chen ZL, Shen JM, Xu ZZ, Liang H, Tian JY, et al. Reinvestigation of the Nitrosamine-Formation Mechanism during Ozonation. Environmental Science & Technology 2009; 43: 5481-5487.
Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment 2017; 596: 303-320.
Yangali-Quintanilla V, Maeng SK, Fujioka T, Kennedy M, Li ZY, Amy G. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalination and Water Treatment 2011; 34: 50-56.
Yoon S, Nakada N, Tanaka H. Occurrence and removal of NDMA and NDMA formation potential in wastewater treatment plants. Journal of Hazardous Materials 2011; 190: 897-902.
Zhao CQ, Xu XC, Chen J, Wang GW, Yang FL. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 2014; 340: 59-66.
Zhu S, Liu YG, Liu SB, Zeng GM, Jiang LH, Tan XF, et al. Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 2017; 179: 20-28.
王建榮、林必窕、林慶福(2000),半導體平坦化CMP技術
賴世勛(2010)蝕刻廢液製備聚合鐵混凝劑應用於染整廢水之可行性研究,嘉南藥理科技大學研究所學位論文
李昆晃(2012)無機污泥產製再生混凝劑與其應用於廢水處理之研究,輔英科技大學研究所學位論文
王崇雅(2014)亞硝胺於淨水程序之生成與健康影響潛勢管理策略,中山大學環工所研究所學位論文
李齊旻(2016)氧化石墨烯含鐵複合吸附材料去除藥品氯苯那敏及亞硝胺生成潛勢之影響因子及效率探討,中山大學環工所研究所學位論文
衛生福利食品藥物管理署(2014).
衛生福利食品藥物管理署(2015).
衛生福利食品藥物管理署(2016).
衛生福利食品藥物管理署(2017).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top