跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇子森
研究生(外文):Su, Tzu-Sen
論文名稱:電沉積電子傳輸層應用於鈣鈦礦 太陽能電池之研究
論文名稱(外文):Electrodeposition of electron-transporting layers for perovskite solar cells
指導教授:衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員:宮坂力賴志煌何國川葉鎮宇
口試委員(外文):Miyasaka, Tsutomu
口試日期:2019-03-12
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:116
中文關鍵詞:二氧化鈦電沉積電極動力學電子傳輸層鈣鈦礦太陽能電池
外文關鍵詞:Titanium dioxideElectrodepositionKinetics of electrode reactionsElectron-transporting layerPerovskite solar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究著重於開發三氯化鈦水溶液為前驅物的二氧化鈦電沉積技術,並且成功將製備之二氧化鈦薄膜應用在鈣鈦礦太陽能電池的電子傳輸層上。起初第三章中,藉由了解此電沉積反應的電極動力學後,進一步透過簡易的調控電流密度與操作電壓來控制電沉積薄膜的形貌與厚度。
第四章中,以定電流沉積鈣鈦礦太陽能電池之緻密層,並與浸泡法、旋轉塗佈法和熱噴霧裂解法製作之緻密層相比較,發現以電沉積技術製作的緻密層不僅覆蓋率佳和厚度薄,甚至可以長出類似苔癬的三維結構,實驗證實除了薄且密的緻密層能有效降低界面再結合外,更因為該三維結構提供的低接觸電阻,使鈣鈦礦太陽能元件的內電阻(series resistance)降低,提升元件填充因子(Fill factor)值。
第五章中,在成功利用電沉積法製備高效能緻密層後,並藉由多重階段(multi-steps)電壓沉積參數,以一鍋法(one-pot)一道次依序完成緻密層與支架層的沉積。其中,結果顯示當過電位小於0.15V時為動力學控制區,可沉積較為緻密之結構;當過電位介於0.15-0.25 V時,為動力學控制與質傳控制區間的轉折區,可得到較為多孔的結構。以此電沉積一鍋法製備之電子傳輸層相較傳統旋塗法有較優異的元件表現。再者,此方法不僅可以大幅縮短含支架層之鈣鈦礦太陽能電池製程,同時達到全製程中單一次燒結的節能目標。
第六章中,於三氯化鈦水溶液加入錫異質金屬進行共鍍,將電沉積的二氧化鈦進行金屬摻雜並改善其自身電性差的缺陷,由XPS數據分析與電性量測,結果證實錫金屬確實摻雜入二氧化鈦中,且薄膜電性隨著摻雜濃度而上升,製備之元件效能亦有所提升,此共鍍技術將大幅開闊電沉積二氧化鈦的應用面向,使電沉積技術更加多元全面。
最後章節嘗試以自行設計之環保循環鍍槽進行二氧化鈦的大面積電沉積,並應用於鈣鈦礦模組之緻密層,相較於旋轉塗佈法,大面積電沉積的二氧化鈦薄膜具備較優良的均勻性且模組效能較高,此結果顯示電沉積二氧化鈦為一極具開發潛力之技術可用於大面積鈣鈦礦模組電子傳輸層之製備。
Abstract
TiO2 is widely employed in photovoltaic cells because of its suitable band position, good optical property and chemical stability. In this study, electrodeposited TiO2 system from aqueous TiCl3 solution and its relevant electrochemical kinetics is first investigated. It is found the morphology of electrodeposited TiO2 could be well-controlled by manipulating either deposited current or voltage and this finding becomes a cornerstone throughout the whole thesis. With this controllability, a series of studies of applying anodic electrodeposition (ED) TiO2 films as the electron-transporting material (ETL) in perovskite solar cells (PSCs) are conducted.
In chapter 4, a mossy and compact structure of TiO2 film is galvanostatically deposited and used as the compact layer (CL) in mesoporous-typed PSCs. In comparison with other three commonly used methods namely dip-coating (DC), spin-coating (SC) and spray-pyrolysis (SP), the ED could create a thin, pinhole-less and mossy-structured CL which not only inhibits the recombination reaction at the interface of FTO and perovskite efficiently, but also improves the contact between the CL and mesoporous scaffold (MS) due to its mossy structure.
In chapter 5, we report the compact and porous structure electrodeposited TiO2 layer can be sequentially deposited at different potential from a single bath. It is shown the morphology is densely compact at the low overpotential region (η < 0.15 V versus Ag/AgCl), which is located in the kinetic-controlled zone on the Tafel plot. On the other hand, the resultant TiO2 film become loosely porous when the overpotential is in the transition region of the kinetic-controlled and mass-transfer-controlled (η =0.15-0.25 V versus Ag/AgCl) zone on the Tafel plot. In contrast to conventional SC process, this procedure of electrodeposited TiO2 bilayer as an efficient ETL in PSCs is more time-saving and energy-saving.
In chapter 6, we add SnCl2 into pristine TiCl3 bath to electrodeposit Sn-doped TiO2 films from a single step. The effects of Sn on the electrical properties, absorption behavior, surface morphology and power conversion efficiency are systemically elucidated. The carrier concentration and surface morphology are significantly related to the Sn doping concentration. In this work, the 5% molar ratio Sn-doped TiO2 based PSCs shows better performance, which is due to the improved electron-extraction capability and conductivity in Sn-doped TiO2 ETLs.
In the last chapter, we upscale the ED system by designing a bi-functional container for the purpose to fabricate perovskite module. The uniformity of ED-TiO2 in large area deposition significantly outperforms the SC-TiO2. The ED-TiO2 provides a facile and potential method to fabricate an efficient large-area ETL for PSC modules.
Abstract I
摘要 III
致謝 IV
Table of contents V
Content of figures VIII
Content of tables XII
Chapter 1. General introduction 1
1-1. Semiconductor introduction 1
1-2. Electrodeposition of semiconductor 2
1-2-1. Oxidation and reduction 3
1-2-2. Electrodeposition of TiO2 4
1-2-3. Application of electrodeposited TiO2 in solar cells 6
1-3. Perovskite solar cells 7
1-3-1. Mesoporous type 9
1-3-2. Meso-superstructured type 10
1-3-3. Planar type 11
1-4. Electron-transporting layer in perovskite solar cells 12
1-4-1. TiO2 Compact layer 12
1-4-2. TiO2 Mesoporous scaffold layer 15
1-5. Motivation of this study 16
Chapter 2. Materials, Equipment and Methodology 17
2-1. Materials and chemical 17
2-2. Equipment and methodology 19
2-2-1. Equipment 19
2-2-2. Methodology 19
Chapter 3.Fundamental study and experimental setup of electrodeposited TiO2 apparatus 28
3-1. Introduction 29
3-2. Experimental apparatus steup 30
3-3. Kinetics of Electrode Reactions 31
3-4. Results and Discussion 34
3-3-1. Anodic TiO2 deposition mechanism 34
3-3-2. Galvanostatic deposition 35
3-3-3. Potentiostatic deposition 38
3-5. Summary 40
Chapter 4. Galvanostatic deposition TiO2 film with mossy nanostructure as a compact layer for scaffold-type perovskite solar cells 41
4-1. Introduction 42
4-2. Experimental Section 43
4-2-1. Compact layer preparation 43
4-2-2. Perovskite solar cell fabrication 43
4-3. Results and discussion 44
4-3-1. Morphology of different CLs 44
4-3-2. Optical and electronic properties 47
4-3-3. Hole Blocking Properties 50
4-3-4. Performance of PSCs 52
4-4. Summary 61
Chapter 5. One-pot electrodeposition of compact layer and mesoporous scaffold for perovskite solar cells 62
5-1. Introduction 63
5-2. Experimental Section 64
5-3. Results and Discussion 65
5-4. Summary 71
Chapter 6. Co-electrodeposition of Sn-doped TiO2 electron-transporting Layers for Perovskite Solar Cells 72
6-1. Introduction 73
6-2. Experimental section 74
6-2-1. Substrate and Sn-doped TiO2 preparation 74
6-2-2. Perovskite solar cell fabrication 75
6-3. Results and Discussion 76
6-3-1. Kinetics of co-electrodeposited Sn-doped TiO2 76
6-3-2. Morphology of different Sn-doped TiO2 film 77
6-3-3. Characterization of Sn-doped ED-TiO2 79
6-3-4. Performance of PSCs 85
6-4. Summary 88
Chapter 7. Electrodeposited TiO2 films for perovskite modules 89
7-1. Introduction 90
7-2. Experimental section 93
7-2-1. Design of the large area electrodeposited bath 93
7-2-2. Perovskite module fabrication 94
7-3. Results and Discussion 95
7-3-1. Uniformity of large-area TiO2 film 95
7-3-2. Modification of interconnection region (P1-P2-P3) 97
7-3-3. Comparison the electrodeposited and spin-coated compact layer in perovskite module 98
7-4. Summary 101
Chapter 8. Conclusion and Outlook 102
References 104
CV and Publications 114
1. Erwin, S. C.; Zu, L.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Nature 2005, 436, 91.
2. Morgan, B. J.; Watson, G. W. J. Phys. Chem. C 2010, 114, (5), 2321-2328.
3. Panicker, M.; Knaster, M.; Kroger, F. J. Electrochem. Soc. 1978, 125, (4), 566-572.
4. Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J.-G.; Wang, C.-M. Nat. Commun. 2017, 8, 14101.
5. Guo, P.; Wang, C. RSC Adv. 2017, 7, (8), 4437-4443.
6. Liu, X.; Huang, J.-Q.; Zhang, Q.; Mai, L. Adv. Mater. 2017, 1601759.
7. Ozkan, S.; Nguyen, N. T.; Hwang, I.; Mazare, A.; Schmuki, P. Small 2017, 1603821.
8. Harilal, M.; Vidyadharan, B.; Misnon, I. I.; Anilkumar, G. M.; Lowe, A.; Ismail, J.; Yusoff, M. M.; Jose, R. ACS Appl. Mater. Interfaces 2017, 10730–10742.
9. Guan, C.; Zhao, W.; Hu, Y.; Lai, Z.; Li, X.; Sun, S.; Zhang, H.; Cheetham, A. K.; Wang, J. Nanoscale Horiz. 2017, 2, (2), 99-105.
10. Pham, K.-C.; McPhail, D. S.; Wee, A. T. S.; Chua, D. H. C. RSC Adv. 2017, 7, (12), 6856-6864.
11. Zuo, L.; Fan, W.; Zhang, Y.; Huang, Y.; Gao, W.; Liu, T. Nanoscale 2017.
12. Chisaka, M.; Ishihara, A.; Morioka, H.; Nagai, T.; Yin, S.; Ohgi, Y.; Matsuzawa, K.; Mitsushima, S.; Ota, K.-i. ACS Omega 2017, 2, (2), 678-684.
13. Hao, L.; Yu, J.; Xu, X.; Yang, L.; Xing, Z.; Dai, Y.; Sun, Y.; Zou, J. J. Power Sources 2017, 339, 68-79.
14. Ajamein, H.; Haghighi, M.; Alaei, S.; Minaei, S. Microporous Mesoporous Mater. 2017, 245, 82-93.
15. Kavan, L.; O'Regan, B.; Kay, A.; Grätzel, M. J. Electroanal. Chem. 1993, 346, (1), 291-307.
16. Wu, M.-S.; Tsai, C.-H.; Wei, T.-C. J. Electrochem. Soc. 2011, 159, (1), B80-B85.
17. Karuppuchamy, S.; Nonomura, K.; Yoshida, T.; Sugiura, T.; Minoura, H. Solid State Ion. 2002, 151, (1–4), 19-27.
18. Wessels, K.; Minnermann, M.; Rathousky, J.; Wark, M.; Oekermann, T. J. Phys. Chem. C 2008, 112, (39), 15122-15128.
19. Jang, K.-I.; Hong, E.; Kim, J. H. Korean J Chem Eng. 2012, 29, (3), 356-361.
20. Zhitomirsky, I. Mater. Lett. 1998, 33, (5), 305-310.
21. Hu, C.-C.; Huang, C.-C.; Chang, K.-H. Electrochem. Commun. 2009, 11, (2), 434-437.
22. Natarajan, C.; Nogami, G. J. Electrochem. Soc. 1996, 143, (5), 1547-1550.
23. Matsumoto, Y.; Ishikawa, Y.; Nishida, M.; Ii, S. J. Phys. Chem. B 2000, 104, (17), 4204-4209.
24. Du, Y.; Cai, H.; Wen, H.; Wu, Y.; Huang, L.; Ni, J.; Li, J.; Zhang, J. ACS Appl. Mater. Interfaces 2016, 8, (20), 12836-12842.
25. Ke, Q.; Liao, Y.; Yao, S.; Song, L.; Xiong, X. J. Mater. Sci. 2016, 51, (4), 2008-2016.
26. Cai, J.; Lv, C.; Watanabe, A. RSC Adv. 2017, 7, (1), 415-422.
27. Ning, X.; Wang, X.; Yu, X.; Zhao, J.; Wang, M.; Li, H.; Yang, Y. Sci. Rep. 2016, 6, 22634.
28. Hwang, J.-Y.; Kim, H. M.; Lee, S.-K.; Lee, J.-H.; Abouimrane, A.; Khaleel, M. A.; Belharouak, I.; Manthiram, A.; Sun, Y.-K. Adv. Energy Mater. 2016, 6, (1), 1501480.
29. Zhang, C.; Kim, S. J.; Ghidiu, M.; Zhao, M.-Q.; Barsoum, M. W.; Nicolosi, V.; Gogotsi, Y. Adv. Funct. Mater. 2016, 26, (23), 4143-4151.
30. Cheng, Y.; Chen, Z.; Wu, H.; Zhu, M.; Lu, Y. Adv. Funct. Mater. 2016, 26, (9), 1338-1346.
31. Ren, H.; Yu, R.; Wang, J.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H.; Wang, D. Nano Lett. 2014, 14, (11), 6679-6684.
32. Zhang, C.; Yu, H.; Li, Y.; Gao, Y.; Zhao, Y.; Song, W.; Shao, Z.; Yi, B. ChemSusChem 2013, 6, (4), 659-666.
33. Wen, Z.; Ci, S.; Mao, S.; Cui, S.; Lu, G.; Yu, K.; Luo, S.; He, Z.; Chen, J. J. Power Sources 2013, 234, 100-106.
34. Feng, H.; Liang, Y.; Guo, K.; Chen, W.; Shen, D.; Huang, L.; Zhou, Y.; Wang, M.; Long, Y. Environ. Sci. Technol. 2016, 3, (12), 420-424.
35. Wu, M.-S.; Tsai, C.-H.; Jow, J.-J.; Wei, T.-C. Electrochim. Acta 2011, 56, (24), 8906-8911.
36. Patra, S.; Andriamiadamanana, C.; Tulodziecki, M.; Davoisne, C.; Taberna, P.-L.; Sauvage, F. Sci. Rep. 2016, 6, 21588.
37. Anuratha, K. S.; Peng, H.-S.; Xiao, Y.; Su, T.-S.; Wei, T.-C.; Lin, J.-Y. Electrochim. Acta 2019, 295, 662-667.
38. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, (17), 6050-6051.
39. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G. Sci. Rep. 2012, 2, 591.
40. Gao, Q.; Yang, S.; Lei, L.; Zhang, S.; Cao, Q.; Xie, J.; Li, J.; Liu, Y. Chem. Lett. 2015, 44, (5), 624-626.
41. Mahmud, M. A.; Elumalai, N. K.; Upama, M. B.; Wang, D.; Soufiani, A. M.; Wright, M.; Xu, C.; Haque, F.; Uddin, A. ACS Appl. Mater. Interfaces 2017, 9, (39), 33841-33854.
42. Park, M.; Kim, J.-Y.; Son, H. J.; Lee, C.-H.; Jang, S. S.; Ko, M. J. Nano Energy 2016, 26, (Supplement C), 208-215.
43. Wang, K.; Shi, Y.; Dong, Q.; Li, Y.; Wang, S.; Yu, X.; Wu, M.; Ma, T. J. Phys. Chem. Lett. 2015, 6, (5), 755-759.
44. Kim, M.-c.; Kim, B. J.; Yoon, J.; Lee, J.-w.; Suh, D.; Park, N.-g.; Choi, M.; Jung, H. S. Nanoscale 2015, 7, (48), 20725-20733.
45. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Energy Environ Sci. 2013, 6, (6), 1739-1743.
46. Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; Snaith, H. J. Energy Environ Sci. 2014, 7, (3), 1142-1147.
47. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, (6107), 643-647.
48. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Adv. Funct. Mater. 2014, 24, (1), 151-157.
49. Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, (7467), 395-398.
50. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, (6196), 542-546.
51. Halvani Anaraki, E.; Kermanpur, A.; Mayer, M. T.; Steier, L.; Ahmed, T.; Turren-Cruz, S.-H.; Seo, J.; Luo, J.; Zakeeruddin, S. M.; Tress, W. R.; Edvinsson, T.; Grätzel, M.; Hagfeldt, A.; Correa-Baena, J.-P. ACS Energy Lett. 2018, 3, (4), 773-778.
52. Feng, J.; Zhu, X.; Yang, Z.; Zhang, X.; Niu, J.; Wang, Z.; Zuo, S.; Priya, S.; Liu, S.; Yang, D. Adv. Mater. 2018, 30, (35), 1801418.
53. Wu, Y.; Yang, X.; Chen, H.; Zhang, K.; Qin, C.; Liu, J.; Peng, W.; Islam, A.; Bi, E.; Ye, F. Appl. Phys. Express 2014, 7, (5), 052301.
54. Juarez-Perez, E. J.; Wuβler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I. J. Phys. Chem. Lett. 2014, 5, (4), 680-685.
55. Meng, T.; Liu, C.; Wang, K.; He, T.; Zhu, Y.; Al-Enizi, A.; Elzatahry, A.; Gong, X. ACS Appl. Mater. Interfaces 2016, 8, (3), 1876-1883.
56. Ke, W.; Fang, G.; Wang, J.; Qin, P.; Tao, H.; Lei, H.; Liu, Q.; Dai, X.; Zhao, X. ACS Appl. Mater. Interfaces 2014, 6, (18), 15959-15965.
57. Ludmila Cojocaru; Satoshi Uchida; Yoshitaka Sanehira; Jotaro Nakazaki; Takaya Kubo; Segawa, H. Chem. Lett. 2015, 44, (5), 674-676.
58. Liu, Z.; Chen, Q.; Hong, Z.; Zhou, H.; Xu, X.; De Marco, N.; Sun, P.; Zhao, Z.; Cheng, Y.-B.; Yang, Y. ACS Appl. Mater. Interfaces 2016, 8, (17), 11076-11083.
59. Wang, J. T.-W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; Nicholas, R. J. Nano Lett. 2014, 14, (2), 724-730.
60. Bills, B.; Shanmugam, M.; Baroughi, M. F. Thin Solid Films 2011, 519, (22), 7803-7808.
61. Rühle, S.; Cahen, D. J. Phys. Chem. B 2004, 108, (46), 17946-17951.
62. Yongzhen, W.; Xudong, Y.; Han, C.; Kun, Z.; Chuanjiang, Q.; Jian, L.; Wenqin, P.; Ashraful, I.; Enbing, B.; Fei, Y.; Maoshu, Y.; Peng, Z.; Liyuan, H. Appl. Phys. Express 2014, 7, (5), 052301.
63. Ito, S.; Liska, P.; Comte, P.; Charvet, R.; Pechy, P.; Bach, U.; Schmidt-Mende, L.; Zakeeruddin, S. M.; Kay, A.; Nazeeruddin, M. K.; Gratzel, M. Chem. Commun. 2005, (34), 4351-4353.
64. Yella, A.; Heiniger, L.-P.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nano Lett. 2014, 14, (5), 2591-2596.
65. Hayakawa, A.; Yoshikawa, O.; Fujieda, T.; Uehara, K.; Yoshikawa, S. Appl. Phys. Lett. 2007, 90, (16), 163517-163900.
66. Eperon, G. E.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano 2014, 8, (1), 591-598.
67. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, (2), 622-625.
68. Kavan, L.; Grätzel, M. Electrochim. Acta 1995, 40, (5), 643-652.
69. Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, (51), 14394-14400.
70. Lv, Y.; Xu, P.; Ren, G.; Chen, F.; Nan, H.; Liu, R.; Wang, D.; Tan, X.; Liu, X.; Zhang, H.; Chen, Z.-K. ACS Appl. Mater. Interfaces 2018, 10, (28), 23928-23937.
71. Lü, X.; Mou, X.; Wu, J.; Zhang, D.; Zhang, L.; Huang, F.; Xu, F.; Huang, S. Adv. Funct. Mater. 2010, 20, (3), 509-515.
72. Kim, S. G.; Ju, M. J.; Choi, I. T.; Choi, W. S.; Choi, H.-J.; Baek, J.-B.; Kim, H. K. RSC Adv. 2013, 3, (37), 16380-16386.
73. Chen, B.-X.; Rao, H.-S.; Li, W.-G.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. J. Mater. Chem. A 2016, 4, (15), 5647-5653.
74. Zhang, H.; Shi, J.; Xu, X.; Zhu, L.; Luo, Y.; Li, D.; Meng, Q. J. Mater. Chem. A 2016, 4, (40), 15383-15389.
75. Zhang, X.; Bao, Z.; Tao, X.; Sun, H.; Chen, W.; Zhou, X. RSC Adv. 2014, 4, (109), 64001-64005.
76. Sung, S. D.; Ojha, D. P.; You, J. S.; Lee, J.; Kim, J.; Lee, W. I. Nanoscale 2015, 7, (19), 8898-8906.
77. Salado, M.; Calió, L.; Contreras-Bernal, L.; Idígoras, J.; Anta, J. A.; Ahmad, S.; Kazim, S. Materials 2018, 11, (7), 1073.
78. Lee, D. G.; Kim, M.-c.; Kim, B. J.; Kim, D. H.; Lee, S. M.; Choi, M.; Lee, S.; Jung, H. S. Appl. Surf. Sci. 2017.
79. Sun, X.; Xu, J.; Xiao, L.; Chen, J.; Zhang, B.; Yao, J.; Dai, S. Int. J. Photoenergy 2017, 2017, 10.
80. Yang, Y.; Ri, K.; Mei, A.; Liu, L.; Hu, M.; Liu, T.; Li, X.; Han, H. J. Mater. Chem. A 2015, 3, (17), 9103-9107.
81. Murugadoss, G.; Mizuta, G.; Tanaka, S.; Nishino, H.; Umeyama, T.; Imahori, H.; Ito, S. APL Mater. 2014, 2, (8), 081511.
82. Heo, J. H.; You, M. S.; Chang, M. H.; Yin, W.; Ahn, T. K.; Lee, S.-J.; Sung, S.-J.; Kim, D. H.; Im, S. H. Nano Energy 2015, 15, 530-539.
83. Giordano, F.; Abate, A.; Correa Baena, J. P.; Saliba, M.; Matsui, T.; Im, S. H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Hagfeldt, A.; Graetzel, M. Nat. Commun. 2016, 7, 10379.
84. Kim, D. H.; Han, G. S.; Seong, W. M.; Lee, J.-W.; Kim, B. J.; Park, N.-G.; Hong, K. S.; Lee, S.; Jung, H. S. ChemSusChem 2015, 8, (14), 2392-2398.
85. Roose, B.; Gödel, K. C.; Pathak, S.; Sadhanala, A.; Baena, J. P. C.; Wilts, B. D.; Snaith, H. J.; Wiesner, U.; Grätzel, M.; Steiner, U.; Abate, A. Adv. Energy Mater. 2016, 6, (2), 1501868.
86. Jusman, Y.; Ng, S. C.; Abu Osman, N. A. Sci. World J. 2014, 2014, 11.
87. Kavan, L.; Tétreault, N.; Moehl, T.; Grätzel, M. J. Phys. Chem. C 2014, 118, (30), 16408-16418.
88. Bott, A. W. Curr. Sep. 1998, 17, 87-92.
89. Ellis, J. D.; Sykes, A. G. J. Chem. Soc., Dalton Trans. 1973, (5), 537-543.
90. Dutoit, E.; Cardon, F.; Gomes, W. Ber. Bunsenges. Phys. Chem. 1976, 80, (6), 475-481.
91. Kaneko, M.; Ueno, H.; Nemoto, J. Beilstein J. Nanotechnol. 2011, 2, (1), 127-134.
92. Wu, M.-S.; Yang, C.-H.; Wang, M.-J. Electrochim. Acta 2008, 54, (2), 155-161.
93. Su, T.-S.; Hsieh, T.-Y.; Wei, T.-C. Solar RRL, 1700120-n/a.
94. Su, T.-S.; Hsieh, T.-Y.; Hong, C.-Y.; Wei, T.-C. Sci. Rep. 2015, 5, 16098.
95. van de Krol, R.; Goossens, A.; Schoonman, J. J. Electrochem. Soc. 1997, 144, (5), 1723-1727.
96. Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P. E.; Lévy, F. J. Appl. Phys. 1994, 75, (4), 2042-2047.
97. Yang, M.; Ding, B.; Lee, J.-K. J. Power Sources 2014, 245, 301-307.
98. Liu, W.; Wang, H.-g.; Wang, X.; Zhang, M.; Guo, M. J. Mater. Chem. C 2016, 4, (47), 11118-11128.
99. Correa Baena, J. P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Srimath Kandada, A. R.; Zakeeruddin, S. M.; Petrozza, A.; Abate, A.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A. Energy Environ. Sci. 2015, 8, (10), 2928-2934.
100. Song, J.; Li, S. P.; Zhao, Y. L.; Yuan, J.; Zhu, Y.; Fang, Y.; Zhu, L.; Gu, X. Q.; Qiang, Y. H. J. Alloys Compd. 2017, 694, 1232-1238.
101. Grant, C. D.; Schwartzberg, A. M.; Smestad, G. P.; Kowalik, J.; Tolbert, L. M.; Zhang, J. Z. Synthetic Metals 2003, 132, (2), 197-204.
102. Zarazua, I.; Han, G.; Boix, P. P.; Mhaisalkar, S.; Fabregat-Santiago, F.; Mora-Seró, I.; Bisquert, J.; Garcia-Belmonte, G. J. Phys. Chem. Lett. 2016, 7, (24), 5105-5113.
103. Masood, M. T.; Weinberger, C.; Sarfraz, J.; Rosqvist, E.; Sandén, S.; Sandberg, O. J.; Vivo, P.; Hashmi, G.; Lund, P. D.; Österbacka, R.; Smått, J.-H. ACS Appl. Mater. Interfaces 2017, 9, (21), 17906-17913.
104. Hong, S.; Han, A.; Lee, E. C.; Ko, K.-W.; Park, J.-H.; Song, H.-J.; Han, M.-H.; Han, C.-H. Current Applied Physics 2015, 15, (5), 574-579.
105. Zhang, C.; Luo, Y.; Chen, X.; Ou-Yang, W.; Chen, Y.; Sun, Z.; Huang, S. Appl. Surf. Sci. 2016, 388, (Part A), 82-88.
106. Vivo, P.; Ojanperä, A.; Smått, J.-H.; Sandén, S.; Hashmi, S. G.; Kaunisto, K.; Ihalainen, P.; Masood, M. T.; Österbacka, R.; Lund, P. D.; Lemmetyinen, H. Org. Electron 2017, 41, (Supplement C), 287-293.
107. Li, S.; Zhao, Y.; Gu, X.; Qiang, Y.; Tan, N. J. Mater. Sci. Mater. Electron. 2017, 28, (18), 13626-13632.
108. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Nature 2013, 499, (7458), 316-319.
109. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, (7535), 476-480.
110. Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Grätzel, M. Science 2016, 354, (6309), 206-209.
111. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
112. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, (6345), 1376-1379.
113. Im, J.-H.; Kim, H.-S.; Park, N.-G. APL Mater. 2014, 2, (8), 081510.
114. Kulkarni, A.; Jena, A. K.; Chen, H.-W.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Solar Energy 2016, 136, 379-384.
115. Jacobs, D. A.; Wu, Y.; Shen, H.; Barugkin, C.; Beck, F. J.; White, T. P.; Weber, K.; Catchpole, K. R. Phys. Chem. Chem. Phys. 2017, 3094-3103.
116. Zhang, Y.; Liu, M.; Eperon, G. E.; Leijtens, T. C.; McMeekin, D.; Saliba, M.; Zhang, W.; de Bastiani, M.; Petrozza, A.; Herz, L. M. Mater. Horiz. 2015, 2, (3), 315-322.
117. Patel, J. B.; Wong‐Leung, J.; Van Reenen, S.; Sakai, N.; Wang, J. T. W.; Parrott, E. S.; Liu, M.; Snaith, H. J.; Herz, L. M.; Johnston, M. B. Adv. Electron Mater. 2017, 3, (2), 1600470.
118. Zhou, W.; Zhen, J.; Liu, Q.; Fang, Z.; Li, D.; Zhou, P.; Chen, T.; Yang, S. J. Mater. Chem. A 2017, 1724-1733
119. Unger, E.; Hoke, E.; Bailie, C.; Nguyen, W.; Bowring, A.; Heumüller, T.; Christoforo, M.; McGehee, M. Energy Environ. Sci. 2014, 7, (11), 3690-3698.
120. Ravishankar, S.; Almora, O.; Echeverría-Arrondo, C.; Ghahremanirad, E.; Aranda, C.; Guerrero, A.; Fabregat-Santiago, F.; Zaban, A.; Garcia-Belmonte, G.; Bisquert, J. J. Phys. Chem. Lett 2017, 8, 915-921.
121. Calado, P.; Telford, A. M.; Bryant, D.; Li, X.; Nelson, J.; O’Regan, B. C.; Barnes, P. R. F. Nat. Commun. 2016, 7, 13831.
122. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. J. Am. Chem. Soc. 2015, 137, (27), 8696-8699.
123. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.-B.; Spiccia, L. Angew. Chem. Int. Ed. 2014, 126, (37), 10056-10061.
124. Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Gratzel, C.; Zakeeruddin, S. M.; Rothlisberger, U.; Gratzel, M. Energy Environ. Sci. 2016, 9, (2), 656-662.
125. Niu, G.; Yu, H.; Li, J.; Wang, D.; Wang, L. Nano Energy 2016, 27, (Supplement C), 87-94.
126. Lin, S.-Y.; Su, T.-S.; Hsieh, T.-Y.; Lo, P.-C.; Wei, T.-C. Adv. Energy Mater. 2017, 7, (17), 1700169.
127. Mali, S. S.; Hong, C. K.; Inamdar, A. I.; Im, H.; Shim, S. E. Nanoscale 2017, 9, (9), 3095-3104.
128. Yang, D.; Yang, R.; Zhang, J.; Yang, Z.; Liu, S.; Li, C. Energy Environ. Sci. 2015, 8, (11), 3208-3214.
129. Di Giacomo, F.; Zardetto, V.; D'Epifanio, A.; Pescetelli, S.; Matteocci, F.; Razza, S.; Di Carlo, A.; Licoccia, S.; Kessels, W. M. M.; Creatore, M.; Brown, T. M. Adv. Energy Mater. 2015, 5, (8), 1401808-n/a.
130. Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A. Science 2016, 354, (6309), 206-209.
131. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, (7458), 316-319.
132. Hsieh, T.-Y.; Huang, C.-K.; Su, T.-S.; Hong, C.-Y.; Wei, T.-C. ACS Appl. Mater. Interfaces 2017, 9, (10), 8623-8633.
133. Shalan, A. E.; Narra, S.; Oshikiri, T.; Ueno, K.; Shi, X.; Wu, H.-P.; Elshanawany, M.; Wei-Guang Diau, E.; Misawa, H. Sustainable Energy & Fuels 2017, 1, (7), 1533-1540.
134. Sun, M.; Liu, X.; Zhang, F.; Liu, H.; Liu, X.; Wang, S.; Xiao, Y.; Li, D.; Meng, Q.; Li, X. Appl. Surf. Sci. 2017, 416, 124-132.
135. Giordano, F.; Abate, A.; Correa Baena, J. P.; Saliba, M.; Matsui, T.; Im, S. H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Hagfeldt, A.; Graetzel, M. Nat Commun. 2016, 7, 10379.
136. Choi, J.; Song, S.; Hörantner, M. T.; Snaith, H. J.; Park, T. ACS Nano 2016, 10, (6), 6029-6036.
137. Li, Y.; Cooper, J. K.; Liu, W.; Sutter-Fella, C. M.; Amani, M.; Beeman, J. W.; Javey, A.; Ager, J. W.; Liu, Y.; Toma, F. M.; Sharp, I. D. Nat Commun. 2016, 7, 12446.
138. Wojciechowski, K.; Saliba, M.; Leijtens, T.; Abate, A.; Snaith, H. J. Energy Environ. Sci. 2014, 7, (3), 1142-1147.
139. Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L. Science 2015, 350, (6263), 944-948.
140. Ranjan, R.; Prakash, A.; Singh, A.; Singh, A.; Garg, A.; Gupta, R. K. J. Mater. Chem. A 2018, 6, (3), 1037-1047.
141. Singh, T.; Öz, S.; Sasinska, A.; Frohnhoven, R.; Mathur, S.; Miyasaka, T. Adv. Funct. Mater. 2018, 28, (14), 1706287.
142. Jaffari, G. H.; Ali, W.; Ain, Q. u.; Gul, M.; Hassan, Q. u.; Ali, A.; Wasiq, M. F.; Zhou, J.-P. J Alloys Compd. 2019, 773, 1154-1164.
143. Wu, M.-C.; Liao, Y.-H.; Chan, S.-H.; Lu, C.-F.; Su, W.-F. Solar RRL 2018, 2, (8), 1800072.
144. Liang, C.; Li, P.; Zhang, Y.; Gu, H.; Cai, Q.; Liu, X.; Wang, J.; Wen, H.; Shao, G. J Power Sources 2017, 372, 235-244.
145. Su, T.-S.; Hsieh, T.-Y.; Wei, T.-C. Solar RRL 2018, 2, (3), 1700120.
146. Maillard, F.; Bonnefont, A.; Chatenet, M.; Guétaz, L.; Doisneau-Cottignies, B.; Roussel, H.; Stimming, U. Electrochim. Acta 2007, 53, (2), 811-822.
147. Zhao, Y.; Liu, J.; Shi, L.; Yuan, S.; Fang, J.; Wang, Z.; Zhang, M. Applied Catalysis B: Environmental 2011, 103, (3-4), 436-443.
148. Ganeshraja, A. S.; Thirumurugan, S.; Rajkumar, K.; Zhu, K.; Wang, Y.; Anbalagan, K.; Wang, J. RSC Adv. 2016, 6, (1), 409-421.
149. Hosseini Yeganeh, S. E.; Kazazi, M.; Koozegar Kaleji, B.; Kazemi, S. H.; Hosseinzadeh, B. J. Mater. Sci. Mater. Electron. 2018, 29, (13), 10841-10852.
150. Donaruma, L. G. J Polym Sci C.: Polymer Letters 1986, 24, (8), 427-428.
151. Kavan, L.; Tétreault, N.; Moehl, T.; Grätzel, M. J. Phys. Chem. C 2014, 118, (30), 16408-16418.
152. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. J. Chem. Educ. 2018, 95, (2), 197-206.
153. Obrzut, J.; Page, K. A. Phys. Rev. B 2009, 80, (19), 195211.
154. Cai, Q.; Zhang, Y.; Liang, C.; Li, P.; Gu, H.; Liu, X.; Wang, J.; Shentu, Z.; Fan, J.; Shao, G. Electrochim. Acta 2018, 261, 227-235.
155. Duan, Y.; Fu, N.; Liu, Q.; Fang, Y.; Zhou, X.; Zhang, J.; Lin, Y. J. Phys. Chem. C 2012, 116, (16), 8888-8893.
156. Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Nat. Commun. 2015, 6, 7747.
157. Jung, Y. C.; Bhushan, B. Nanotechnology 2006, 17, (19), 4970-4980.
158. Brecl, K.; Topič, M.; Smole, F. Prog. Photovoltaics: Research and Applications 2005, 13, (4), 297-310.
159. Probst, V.; Stetter, W.; Riedl, W.; Vogt, H.; Wendl, M.; Calwer, H.; Zweigart, S.; Ufert, K. D.; Freienstein, B.; Cerva, H.; Karg, F. H. Thin Solid Films 2001, 387, (1), 262-267.
160. Rakocevic, L.; Gehlhaar, R.; Merckx, T.; Qiu, W.; Paetzold, U. W.; Fledderus, H.; Poortmans, J. IEEE J Photovolt. 2017, 7, (1), 404-408.
161. Razza, S.; Di Giacomo, F.; Matteocci, F.; Cina, L.; Palma, A. L.; Casaluci, S.; Cameron, P.; D'epifanio, A.; Licoccia, S.; Reale, A. J. Power Sources 2015, 277, 286-291.
162. Zhou, P.; Li, W.; Li, T.; Bu, T.; Liu, X.; Li, J.; He, J.; Chen, R.; Li, K.; Zhao, J.; Huang, F. Micromachines 2017, 8, (2), 55.
163. Heo, J. H.; Lee, M. H.; Jang, M. H.; Im, S. H. J. Mater. Chem. A 2016, 4, (45), 17636-17642.
164. Qin, T.; Huang, W.; Kim, J.-E.; Vak, D.; Forsyth, C.; McNeill, C. R.; Cheng, Y.-B. Nano Energy 2017, 31, 210-217.
165. Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M. APL Mater. 2016, 4, (9), 091508.
166. Nia, N. Y.; Zendehdel, M.; Cinà, L.; Matteocci, F.; Di Carlo, A. J. Mater. Chem. A 2018, 6, (2), 659-671.
167. Singh, M.; Chiang, C.-H.; Boopathi, K. M.; Hanmandlu, C.; Li, G.; Wu, C.-G.; Lin, H.-C.; Chu, C.-W. J. Mater. Chem. A 2018, 6, (16), 7114-7122.
168. Walter, A.; Moon, S.-J.; Kamino, B. A.; Löfgren, L.; Sacchetto, D.; Matteocci, F.; Taheri, B.; Bailat, J.; Di Carlo, A.; Ballif, C. IEEE J Photovolt. 2018, 8, (1), 151-155.
169. Dagar, J.; Castro-Hermosa, S.; Gasbarri, M.; Palma, A. L.; Cina, L.; Matteocci, F.; Calabrò, E.; Di Carlo, A.; Brown, T. M. Nano Research 2017, 11, (5), 2669-2681
170. Yang, M.; Kim, D. H.; Klein, T. R.; Li, Z.; Reese, M. O.; Tremolet de Villers, B. J.; Berry, J. J.; van Hest, M. F.; Zhu, K. ACS Energy Lett. 2018, 3, (2), 322-328.
171. Li, K.; Xiao, J.; Yu, X.; Bu, T.; Li, T.; Deng, X.; Liu, S.; Wang, J.; Ku, Z.; Zhong, J. ACS Appl. Energy Mater. 2018, 1, (8), 3565-3570.
172. Higuchi, H.; Negami, T. Jpn. J. Appl. Phys. Pt. 2018, 57, (8S3), 08RE11.
173. Calabrò, E.; Matteocci, F.; Palma, A. L.; Vesce, L.; Taheri, B.; Carlini, L.; Pis, I.; Nappini, S.; Dagar, J.; Battocchio, C. Sol. Energy Mater Sol. Cells 2018, 185, 136-144.
174. Bu, T.; Shi, S.; Li, J.; Liu, Y.; Shi, J.; Chen, L.; Liu, X.; Qiu, J.; Ku, Z.; Peng, Y. ACS Appl. Mater. Interfaces 2018, 10, (17), 14922-14929.
175. Ding, B.; Huang, S.-Y.; Chu, Q.-Q.; Li, Y.; Li, C.-X.; Li, C.-J.; Yang, G.-J. J. Mater. Chem. A 2018, 6, (22), 10233-10242.
176. He, J.; Bi, E.; Tang, W.; Wang, Y.; Yang, X.; Chen, H.; Han, L. Nano-Micro Lett. 2018, 10, (3), 49.
177. Yan, J.; R., L. M.; Longbin, Q.; Shenghao, W.; K., O. L.; Zhifang, W.; J., J.-P. E.; Yabing, Q. Adv. Funct. Mater. 2018, 28, (1), 1870007.
178. Palma, A. L.; Matteocci, F.; Agresti, A.; Pescetelli, S.; Calabrò, E.; Vesce, L.; Christiansen, S.; Schmidt, M.; Di Carlo, A. IEEE J. Photovolt. 2017, 7, (6), 1674-1680.
179. Di Giacomo, F.; Shanmugam, S.; Fledderus, H.; Bruijnaers, B. J.; Verhees, W. J.; Dorenkamper, M. S.; Veenstra, S. C.; Qiu, W.; Gehlhaar, R.; Merckx, T. Sol. Energy Mater Sol. Cells 2018, 181, 53-59.
180. Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, M. K. Nat. Commun. 2017, 8, 15684.
181. Yue, H.; Si, S.; Anyi, M.; Yaoguang, R.; Huawei, L.; Xiong, L.; Hongwei, H. Solar RRL 2017, 1, (2), 1600019.
182. Cai, L.; Liang, L.; Wu, J.; Ding, B.; Gao, L.; Fan, B. Journal of Semiconductors 2017, 38, (1), 014006.
183. Qiu, W.; Merckx, T.; Jaysankar, M.; Masse de la Huerta, C.; Rakocevic, L.; Zhang, W.; Paetzold, U. W.; Gehlhaar, R.; Froyen, L.; Poortmans, J.; Cheyns, D.; Snaith, H. J.; Heremans, P. Energy Environ. Sci. 2016, 9, (2), 484-489.
184. Agresti, A.; Pescetelli, S.; Palma, A. L.; Del Rio Castillo, A. E.; Konios, D.; Kakavelakis, G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F. ACS Energy Lett. 2017, 2, (1), 279-287.
185. Priyadarshi, A.; Haur, L. J.; Murray, P.; Fu, D.; Kulkarni, S.; Xing, G.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Energy Environ. Sci. 2016, 9, (12), 3687-3692.
186. Matteocci, F.; Cinà, L.; Di Giacomo, F.; Razza, S.; Palma, A. L.; Guidobaldi, A.; D'Epifanio, A.; Licoccia, S.; Brown, T. M.; Reale, A. Prog. Photovoltaics: Research and Applications 2016, 24, (4), 436-445.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊