跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/04 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李廷勳
研究生(外文):Lee, Ting-Hsun
論文名稱:探討銅摻雜對層狀P2- Na0.67Mn0.7-xNi0.3CuxO2 之電性影響
論文名稱(外文):Effects of Cu doping on the Electrochemical Properties of P2 Layered Type Oxides, Na0.67Mn0.7-xNi0.3CuxO2
指導教授:蔡哲正
指導教授(外文):Tsai, Cho-Jen
口試委員:陳瀚儀蔡哲正林居男
口試日期:2019-01-14
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:二次電池鈉電池層狀氧化物
外文關鍵詞:SodiumIonBatteryCathodeLayered-oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:493
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在現今能源議題裡,鋰離子電池發展已遇到許多瓶頸,而科學家們回到與鋰電池同時問世的鈉離子電池,想要在鈉離子電池上得到更便宜、更有效率儲存能源,而其中做為正極材料的鈉層狀過度金屬氧化物則被認為是最有潛力的研討方向之一,而其中以錳為基底的層狀氧化物表現不管在能量密度與電容量上都較為突出,故本篇會以對錳基底的層狀氧化物下進行不同摻雜的改質,以得到更好的電化學表現性能。
本篇中主要以討論P2鈉錳鎳銅氧Na0.67Mn0.7-xNi0.3CuxO2在不同的銅摻雜量對於錳的價數、循環壽命、鈉離子擴散係數以及結構可逆程度作為判斷依據,其中以XPS、EIS、CV、Ex-situ XRD,作為主要輔助工具,探討三種參數下對於此化學成分之改變以及電化學表現結果,其中以銅摻雜x = 0.1的電化學及結構穩定性為最好,其次為x = 0.05,而沒有摻雜x = 0的在本篇實驗中尤在循環壽命上特別的劣勢,而其中以活性元素在一定程度的電容量犧牲以取代原本的錳以降低錳之歧化反應並且提高整體放電電壓平台的結果是非常明確的,換句話說,未來方向可以繼續參考以此方式的摻雜,再結合額外的表面改質或者是不同導電碳的摻雜,在不久的將來是非常具有市場性及競爭力的研究方向。
Nowadays, with an eye to solving the energy issues and the cost down of lithium ion batteries, scholars and scientists are devoted to taking sodium ion batteries as the next generation secondary batteries as promising candidates, especially layered types NaTMO2.
When it comes to NaTMO2, manganese-based (TM = Mn) layered SIBs outperform other transition metal like titanium, copper, and iron etc. in energy density, working voltage, and specific capacity. Therefore, in this thesis, we aim to investigate the effect of Cu doping, Na0.67Mn0.7-xNi0.3CuxO2, on the electrochemical properties of the SIBs. We mainly discuss the electrochemical performances and phase stability of P2- Na0.67Mn0.7-xNi0.3CuxO2, such as cycle life, rate capability, sodium ion diffusion coefficient, and phase reversibility. We found that P2- Na0.67Mn0.7-xNi0.3CuxO2, with x = 0.1, can achieve the best cycle performance and phase reversibility while the sample with x = 0 have the poorest electrochemical performance and phase stability. Our results clearly show that substitution of little amounts of maganese with Cu can deliver better cycle life and reducing the effect of manganese disproportionantion at the cost of some specific capacity loss from elevating the valence of manganese from 3+ to 4+. However, the overall performances result relative good effects for the active materials.
摘要
目錄
第一章 緒論 .....12
第二章 文獻回顧 .....20
第三章 實驗記錄 .....32
第四章 結果與討論 ....40
第五章 結論 .........69
第六章 參考文獻 ......70
[1] http://hasshe.com/sodium-ion-battery-5b7a9d102756dd6f6c7f1724/
[2] https://www.ameriresearch.com/product/sodium-ion-batteries-market/
[3] http://www.goldendragoncapital.com/lithium/
[4] N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, "Research development on sodium-ion batteries," Chem Rev, vol. 114, no. 23, pp. 11636-82, Dec 10 2014.
[5] H. Pan, Y.-S. Hu, and L. Chen, "Room-temperature stationary sodium-ion batteries for large-scale electric energy storage," Energy & Environmental Science, vol. 6, no. 8, 2013.
[6] X. Xiang, K. Zhang, and J. Chen, "Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries," Adv Mater, vol. 27, no. 36, pp. 5343-64, Sep 23 2015.
[7] M. H. Han, E. Gonzalo, G. Singh, and T. Rojo, "A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries," Energy & Environmental Science, vol. 8, no. 1, pp. 81-102, 2015.
[8] J. W. Liguang Wanga, "Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries," Nano Energy, p. 9, 2017.
[9] E. G. Bego˜na Silv´an, "On the dynamics of transition metal migration and its impact on the performance of layered oxides for sodium-ion batteries: NaFeO2 as a case study," Material Chemistry A, p. 15, 2018.
[10] W. B. P. Nirmalesh Naveen, "Reversible K+‑Insertion/Deinsertion and Concomitant Na+‑Redistribution in P′3-Na0.52CrO2 for High-Performance Potassium-Ion Battery Cathodes," Chemistry of Materials, p. 9, 2018.
[11] M. W. Alexandros Vasileiadis, "Thermodynamics and Kinetics of Na-Ion Insertion into Hollandite- TiO2 and O3-Layered NaTiO2: An Unexpected Link between Two Promising Anode Materials for Na-Ion Batteries," Chemistry of Materials, vol. 6, pp. 1076-1088.
[12] J. Vetter et al., "Ageing mechanisms in lithium-ion batteries," Journal of Power Sources, vol. 147, no. 1-2, pp. 269-281, 2005.
[13] W. K. Pang et al., "Interplay between Electrochemistry and Phase Evolution of the P2-type Nax(Fe1/2Mn1/2)O2 Cathode for Use in Sodium-Ion Batteries," Chemistry of Materials, vol. 27, no. 8, pp. 3150-3158, 2015.
[14] C. Chen et al., "Electrochemical Property-Structure Correlation for Ni-Based Layered Na-Ion Cathodes," ACS Appl Mater Interfaces, vol. 10, no. 34, pp. 28719-28725, Aug 29 2018.
[15] D. Kim, E. Lee, M. Slater, W. Lu, S. Rood, and C. S. Johnson, "Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application," Electrochemistry Communications, vol. 18, pp. 66-69, 2012.
[16] D. Buchholz et al., "Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material," Chemistry of Materials, vol. 25, no. 2, pp. 142-148, 2013.
[17] G. Singh et al., "High Voltage Mg-Doped Na0.67Ni0.3–xMgxMn0.7O2 (x = 0.05, 0.1) Na-Ion Cathodes with Enhanced Stability and Rate Capability," Chemistry of Materials, vol. 28, no. 14, pp. 5087-5094, 2016.
[18] K. Hemalatha, M. Jayakumar, P. Bera, and A. S. Prakash, "Improved electrochemical performance of Na0.67MnO2 through Ni and Mg substitution," Journal of Materials Chemistry A, vol. 3, no. 42, pp. 20908-20912, 2015.
[19] X. H. Zhang et al., "P2-Na2/3Ni1/3Mn5/9Al1/9O2 Microparticles as Superior Cathode Material for Sodium-Ion Batteries: Enhanced Properties and Mechanisam via Graphene Connection," ACS Appl Mater Interfaces, vol. 8, no. 32, pp. 20650-9, Aug 17 2016.
[20] Y. Liu et al., "Layered P2-Na 2/3 [Ni 1/3 Mn 2/3 ]O 2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al 2 O 3 surface modification," Nano Energy, vol. 27, pp. 27-34, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top