|
[1] Zhao, C. Tan, A. Pastorin, G. & Ho, H.K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol. Adv. 31, 654−668 (2013). [2] Song, M.J., Dean, D. & Tate, M.L.K. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds. Biomaterials 34, 5766−5775 (2013). [3] Correia, C. et al. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterilia 8, 2483−2493 (2012). [4] Wang, L., Johnson, J.A., Zhang, Q. & Beahm, E.K. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomaterilia 9, 8921−8931 (2013). [5] Portmann-Lanz, C. et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol. 194, 664–673 (2006). [6] Serakinci, N. Fahrioglu, U. & Christensen, C. Mesenchymal stem cells, cancer challenges and new Directions. Eur. J. Cancer 50, 1522–1530 (2014). [7] Zhao, L.X. et al. Modification of the brain-derived neurotrophic factor gene: a portal to transform mesenchymal stem cells into advantageous engineering cells for neuroregeneration and neuroprotection. Exp. Neurol. 190, 396– 406 (2004). [8] Hadar, A. Philip, L. & Arnon N. Tissue regeneration potential in human umbilical cord blood. Best Pract. Res. Clin. Haematol. 23, 291−303 (2010). [9] Marmotti, A. et al. Minced umbilical cord blood fragments as a source of cells for orthopaedic tissue engineering: an in vitro. Stem Cells Int. 2012, 1−13 (2012). [10] Mabed, M. The Potential Utility of Bone Marrow or Umbilical Cord Blood Transplantation For the Treatment of Type I Diabetes Mellitus. Biol. Blood Marrow Transplant 17, 455−464 (2011). [11] ven-Ram, S., Artym, V., & Yamada, K.M. Matrix control of stem cell fate. Cell 126, 645¬¬−647 (2006). [12] Engler, A.J., Sen, S., Sweeney, H.L., & Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677¬¬−689 (2006). [13] Discher, D.E., Janmey, P. & Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139−1143 (2005). [14] Hronik-Tupaj, M., Rice, W. L., Crinin-Golomb, M., Kaplan, D.L. & Georgakoudi, I. Osteoblast differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed. Eng. Online 10, 1−22 (2011). [15] Ong, W. K. et al. The activation of directional stem cell motility by green light-emitting diode irradiation. Biomaterials 34, 1911−1920 (2013). [16] Choi, J.S. & Harley, B.A.C. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 33, 4460−4468 (2012). [17] Qutachi, O., Shakesheff, K.M. & Buttery, L.D.K. Delivery of definable number of drug or growth factor loaded poly (DL-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates. J. Control Release 168, 18−27 (2013). [18] Mathews, S. Bhonde, R. Gupta, P. K. & Totey, S. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Differentiation 84, 185−192 (2012). [19] Yu, D. et al. Blockade of Peroxynitrite-Induced Neural Stem Cell Death in the Acutely Injured Spinal Cord by Drug-Releasing Polymer. Stem Cells 27, 3121−3121 (2009). [20] Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103−1108 (2009). [21] Curtis, A. & Wilkinson, C. Topographical control of cells. Biomaterials 18, 1573−1583 (1997). [22] Discher, D.E., Mooney, D.J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673−1677 (2009). [23] Kuo, S.W. et al. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials 33, 5013−5022 (2012). [24] Serakinci N., Fahrioglu U. and Christensen R. Mesenchymal stem cells, cancer challenges and new directions. European Journal of Cancer 50, 1522−1530 (2014). [25] Ankey, R.A. New Technologies: Ethics of Stem Cell Research, International Encyclopedia of Public Health, 533–536 (2008). [26] McLaren, A. A Scientist’s View of the Ethics of Human Embryonic Stem Cell Research Cell Stem Cell 1, 23–26 (2000). [27] Fuchs, E. and Segre, J.A. Stem Cells: A New Lease on Life Cell 100, 143–155 (2000). [28] Dai, L.J., Moniri, M.R., Zeng, Z.R., Zhou, J.X., Rayat, J. and Wamock, G.L. Potential implications of mesenchymal stem cells in cancer therapy Cancer Letters 305, 8–20 (2011). [29] Vija, L., Farge, D., Gautier, J.F., Vexiau, P., Dumitrache, C., Bourgarit, A., Verrecchia, F. and Larghero, J. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes Diabetes & Metabolism 35, 85–93 (2009). [30] Ozawa, K., Sato, K., Oh, I., Ozaki, K., Uchibori, R., Obara, Y., Kikuchi, Y., Ito, T., Okada, T., Urabe, M., Mizukami, H. and Kume, A. Cell and gene therapy using mesenchymal stem cells (MSCs) Journal of Autoimmunity 30, 121–127 (2008). [31] Shah, K. Mesenchymal stem cells engineered for cancer therapy Advanced Drug Delivery Reviews 64, 739–748 (2012). [32] Friedenstein, A.J., Chailakhyan, R.K. and Gerasimov, U.V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers Cell & Tissue Kinetics 20, 263–272 (1987). [33] Kim, S.M., Jung, J.U., Ryu, J.S., Jin, J.W., Yang, H.J., Ko, K., You, H.K., Jung, K.Y. and Choo, Y.K. Effects of gangliosides on the differentiation of human mesenchymal stem cells into osteoblasts by modulating epidermal growth factor receptors Biochemical and Biophysical Research Communications 371, 866–871 (2008). [34] Ghaedi, M., Tuleuova, N., Zern, M.A., Wu, J. and Revzin, A. Bottom-up signaling from HGF-containing surfaces promotes hepatic differentiation of mesenchymal stem cells Biochemical and Biophysical Research Communications 407, 295–300 (2011). [35] Mohsin, S., Shams, S., Nasir, G.A., Khan, M., Awan, S.J., Khan, S.N. and Riazuddin, S. Enhanced hepatic differentiation of mesenchymal stem cells after pretreatment with injured liver tissue Differentiation 81, 42–48 (2011). [36] Danišovič, L’., Varga, I., Polák, Š. Growth factors and chondrogenic differentiation of mesenchymal stem cells Tissue and Cell 44, 69–73 (2012). [37] Wu, S.L., Zhang, T., Zheng, R.T. and Cheng, G.A. Facile morphological control of single-crystalline silicon nanowires Applied Surface Science 258, 9792– 9799 (2012). [38] Charbord, P. Bone marrow mesenchymal stem cells: historical overview and concepts”, Human Gene Therapy 21, 1045–1056 (2010). [39] Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow J Cell Sci 116 1827–1835 (2003) [40] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesen- chymal stem cells Science 284, 143–147 (1999). [41] Griffiths M.J., Bonnet D. and Janes S.M. Stem cells of the alveolar epithelium Lancet 366, 249–260 (2005). [42] Mimeault M., Hauke R., Batra S.K. Stem cells: a revolution in therapeutics – recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies Clin Pharmacol Ther 82, 252–264 (2007). [43] Mouiseddine M., Francois S., Semont A., Sache A., Allenet B. and Mathieu N., et al. Human mesenchymal stem cells home specif- ically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model Br J Radiol 80, S49–S55 (2007). [44] Franßcois S., Mouiseddine M., Mathieu N., Semont A., Monti P. and Dudoignon N., et al. Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model Ann Hematol 86, 1–8 (2007). [45] Lee J.W., Fang X., Gupta N., Serikov V. and Matthay M.A. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin- induced acute lung injury in the ex vivo perfused human lung Proc Natl Acad Sci USA 106,16357–16362 (2009). [46] Matthay M.A. and Idell S. Update on acute lung injury and critical care medicine Am J Respir Crit Care Med 181, 1027–1032 (2010). [47] Liu, S.Q., Tian, Q., Hedrick, J.L., Hui, J.H.P., Ee, P.L.R. and Yang, Y.Y. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage Biomaterials 31, 7298–7307 (2010). [48] Li, Y., Chu, J.S., Kurpinski, K., Li, X., Bautista, D.M., Yang, L., Sung, K.L.P. and Li, S. Biophysical Regulation of Histone Acetylation in Mesenchymal Stem Cells Biophysical Journal 100, 1902–1909 (2011). [49] Her, G.J., Wu, H.C., Chen, M.H., Chen, M.Y., Chang, S.C. and Wang, T.W. Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages Acta Biomaterialia 9, 5170–5180 (2013). [50] Wang, P.Y., Tsai, W.B. and Voelcker, N.H. Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients Acta Biomaterialia 8, 519–530 (2012). [51] Even-Ram, S., Artym, V. and Yamada, K.M. Matrix control of stem cell fate Cell 126, 645–647 (2006). [52] Kim, M.S., Park, S.J., Gu, B.K. and Kim, C.H. Inter-connecting pores of chitosan scaffold with basic fibroblast growth factor modulate biological activity on human mesenchymal stem cells Carbohydrate Polymers 87, 2683–2689 (2012). [53] Mathews, S., Bhonde, R., Gupta, P.K. and Totey, S. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells Differentiation 84, 185–192 (2012). [54] Cheng, T., Yang, C., Weber, N., Kim, H.T. and Kuo, A.C. Fibroblast growth factor 2 enhances the kinetics of mesenchymal stem cell chondrogenesis Biochemical and Biophysical Research Communications 426, 544–550 (2012). [55] Indrawattana, N., Chen, G., Tadokoro, M., Shann, L.H., Ohgushi, H., Tateishi, T., Tanaka, J. and Bunyaratvej, A. Growth factor combination for chondrogenic induction from human mesenchymal stem cell Biochemical and Biophysical Research Communications 320, 914–919 (2004). [56] Jiang, X., Cao, H.Q., Shi, L.Y., Ng, S.Y., Stanton, L.W. and Chew, S.Y. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment Acta Biomaterialia 8, 1290–1302 (2012). [57] Shi, X., Wang, Y., Varshney, R.R., Ren, L., Gong, Y. and Wang, D.A. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro European Journal of Pharmaceutical Sciences 39, 59–67 (2010). [58] Brammer, K.S., Choi, C., Frandsen, C.J., Oh, S. and Jin, S. Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation Acta Biomaterialia 7, 683–690 (2011). [59] Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Okumura, M. and Fujinaga, T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis Biotechnology and Bioengineering 93, 1152–1163 (2006). [60] Noth, U., Rackwitz, L., Heymer, A., Weber, M., Baumann, B., Steinert, A., Schütze, N., Jakob, F. and Eulert, J. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels Journal of Biomedical Materials Research Part A 83, 626–635 (2007). [61] Collins, M.N. and Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering—A review Carbohydrate Polymers 92, 1262–1279 (2013). [62] Dash, M., Chiellini, F., Ottenbrite, R.M. and Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications Progress in Polymer Science 36, 981–1014 (2011). [63] Sinha, V.R., Singla, A.K., Wadhawan, S., Kaushik, R., Kumria, R., Bansal, K. and Dhawan, S. Chitosan microspheres as a potential carrier for drugs International Journal of Pharmaceutics 274, 1–33 (2004). [64] Koide, T. Triple helical collagen-like peptides: engineering and applications in matrix biology Connective Tissue Research 46, 131–141 (2005). [65] Hess, R., Jaeschke, A., Neubert, H., Hintze, V., Moeller, S., Schnabelrauch, Hans-Peter Wiesmann, M., Hart, D.A. and Scharnweber, D. Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs Biomaterials 33, 8975–8985 (2012). [66] Genovese, J.A., Spadaccio, C., Rivello, H.G., Toyoda, Y. and Patel, A.N. Electrostimulated bone marrow human mesenchymal stem cells produce follistatin Cytotherapy 11, 448–456 (2009). [67] Aubin, J.E. Regulation of osteoblast formation and function Reviews in Endocrine & Metabolic Disorders 2, 81–94 (2001). [68] Lin H.I. et al. Functional studies of anodic oxidized b-type-Ti-28NB-11Ta-8Zr alloy for mechanical, in-vitro and antibacterial capability. Scientific reports 8, 14253-1–14253-11 (2018). [69] Martinez-Gutierrez, F. et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29, 651–660 (2013). [70] Lee J. et al. The control pf cell adhesion and viability by zinc oxide nanorods. Biomaterials 29, 3743–3749 (2008). [71] Choi C.H., Hagvall S.H., Wu B.M., Dunn J.C., Beygui R.E. and Kim C.J.. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28, 1672–1679 (2007). [72] Gonsalves K.E., Halberstadt C.R., Laurencin C.T. and Nair L.S. Biomedical nano- structures. New York: John Wiley & Sons Inc. (2007). [73] Girard PP, Cavalcanti-Adam EA, Kemkemer R, Spatz JP. Cellular chemo- mechanics at interfaces: sensing, integration and response. Soft Matter 3, 307–326 (2007). [74] Lim J.I., Yu B., Woo K.M. and Lee Y.K. Immobilization of TiO2 nanofibers on titanium plates for implant applications. Applied Surface Science 255, 2456–2460 (2008). [75] Angelis F.D., MAlerba M., Patrini M. Miele E., Das G., Toma A., Zaccaria P. and Fabrizio E.D., 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano letter 13, 3553–3558 (2013). [76] Zhao, L., Liu, L., Wu, Z., Zhang, Y. and Chu, P.K. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation, Biomaterials 33, 2629–2641 (2012). [77] Tay, C.Y., Gu, H., Leong, W.S., Yu, H., Li, H.Q., Heng, B.C., Tantang, H., Loo, S.C.J., Li, L.J. and Tan, L.P. Cellular behavior of human mesenchymal stem cells cultured on single-walled carbon nanotube film. Carbon 48, 1095–1104 (2010). [78] Rodrigues, A.A., Batista, N.A., Bavaresco, V.P., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., Santos Jr., A.R. and Belangero, W.D. Polyvinyl alcohol associated with carbon nanotube scaffolds for osteogenic differentiation of rat bone mesenchymal stem cells. Carbon 50, 450–459 (2012). [79] Hu, Y., Cai, K., Luo, Z., Xu, D., Xie, D., Huang, Y., Yang, W. and Liu, P. TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomaterialia 8, 439–448 (2012). [80] Zhao, L., Wang, H., Huo, K., Zhang, X., Wang, W., Zhang, Y., Wu, Z. and Chu, P.K. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates Biomaterials 34, 19–29 (2013). [81] Pui, T.S., Agarwal, A., Ye, F., Huang, Y. and Chen, P. Nanoelectronic detection of triggered secretion of proinflammatory cytokines using CMOS compatible silicon nanowires. Biosensors and Bioelectronics 26, 2746–2750 (2011). [82] Chen, C.C., Chen, Y.Z., Huang, Y.J. and Sheu, J.T. Using silicon nanowire devices to detect adenosine triphosphate liberated from electrically stimulated HeLa cells. Biosensors and Bioelectronics 26, 2323–2328 (2011). [83] Chen, K.I, Li, B.R. and Chen, Y.T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6, 131–154 (2011). [84] Wagner R.S. and Ellis W.C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied physical letters 4, 89-90 (1964). [85] Yan H.F., Xing Y.J., Hang Q.L., Yu D.P., Wang Y.P., Xu J., Xi Z.H. and Feng S.Q. Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism. Chemical physical letters 323, 224–228 (2000). [86] Yao, Y., Li, F. and Lee, S.T. Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts Chemical Physics Letters 406, 381–385 (2005). [87] Peng, K.Q., Hu, J.J., Yan, Y.J., Wu, Y., Fang, H., Xu, Y., Lee, S.T. and Zhu, J. Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles Advanced Functional Materials, 16, 387–394 (2006). [88] Peng, K.Q., Fang, H., Hu, J., Wu, Y., Zhu, J., Yan, Y. and Lee, S. Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution Chemistry– A European Journal, 12, 7942–7947 (2006). [89] Chen C.Y., Wu C.S., Chou C.J., Yen T.J. Morphological control of single-crystalline silicon nanowire arrays near room temperature. Adv Mater 20, 3811−3815 (2008). [90] Timoshenko S. History of strength of materials, McGraw-Hill New York (1953). [91] Lee O.K. et al. Fluvastatin and lovastatin but not pravastatin induce neuroglial differentiation in human mesenchymal stem cells. J Cell Biochem 93, 917−928 (2004). [92] Lee K.D. et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275−1284 (2004). [93] Lee J. et al. The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29, 3743−3749 (2008). [94] Shih Y.R., Chen C.N., Tsai S.W., Wang Y.J., Lee O.K. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers Stem Cells 24, 2391−2397 (2006). [95] Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM. [96] Sneddon I.N. The relation between load and penetration in the axisymetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science 3, 47−57 (1965). [97] Wennerberg A. et al. Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Implants Res 25 1041−1050 (2014). [98] Lampin M., Warocquier‐Clérout R., Legris C., Degrange M., Sigot‐Luizard M.F. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res 36, 99–108 (1997). [99] Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477−1508 (2003). [100] Ali, S.M., Jennings, J.M., Phinney, L.M. Temperature dependence for in-use stiction of polycrystalline silicon MEMS cantilevers. Sensors and Actuators A: Physical 113, 60−70 (2004). [101] Tziampazis E., Kohn J., Moghe P.V. PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration. Biomaterials 21, 511−520 (2000). [102] Liu L., Sheardown H. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Biomaterials 26, 233−44 (2005). [103] Park J.K., Kim Y.J., Yeom J., Jeon J.H., Yi G.C., Je J.H., et al. The topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Adv Mater 22, 4857−4861 (2010). [104] Lee J., Kang B.S., Hicks B., Chancellor Jr T.F., Chu B.H., Wang H.T., et al. The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29, 3743−3749 (2008). [105] Park J., Bauer S., von der Mark K., Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7, 1686−1691 (2007). [106] Kim W., Ng J.K., Kunitake M.E., Conklin B.R., Yang P. Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129, 7228−7229 (2007). [107] Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60, 24−34 (2005). [108] Discher D.E., Janmey P., Wang Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139−1143 (2005). [109] Rodriguez J.P., Gonzalez M., Rios S., Cambiazo V. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem 93, 721−731 (2004). [110] Geoffrey M.C. The cell: a molecular approach. ASM Press; p. 673 Harvard Medical school (1997). [111] Chen C.S., Tan J., Tien J. Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng 6, 275−302 (2004). [112] Geiger B., Bershadsky A., Pankov R., Yamada K.M. Transmembrane crosstalk between the extracellular matrixecytoskeleton crosstalk. Nat Rev Mol Cell Biol 2, 793−805 (2001). [113] Cary L.A., Han D.C., Guan J.L. Integrin-mediated signal transduction pathways. . 14, 1001−1009 (1999). [114] Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673−687 (2002). [115] Salasznyk R.M., Klees R.F., Hughlock M.K., Plopper G.E. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Comm Adhes 11, 137−153 (2004). [116] Salasznyk R.M., Williams W.A., Boskey A., Batorsky A., Plopper G.E. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol 2004, 24−34 (2004). [117] Salasznyk R.M., Klees R.F., Williams W.A., Boskey A., Plopper G.E. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res 313, 22−37 (2007). [118] Giancotti F.G., Tarone G. Positional control of cell fate through joint integrin/ receptor protein kinase signaling. Annu Rev Cell Dev Biol 19, 173−206 (2003). [119] Olivares-Navarrete R., Raz P., Zhao G., Chen J., Wieland M., Cochran D.L., et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron- scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci USA 105, 15767−15772 (2008). [120] Shih Y.R., Tseng K.F., Lai H.Y., Lin C.H., Lee O.K. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res (2010). [121] Hamidouche Z., Fromigue O., Ringe J., Haupl T., Vaudin P., Pages J.C., et al. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA 106, 18587−18591 (2009). [122] Farnier C., Krief S., Blache M., Diot-Dupuy F., Mory G., Ferre P., et al. Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int J Obes Relat Metab Disord 27, 1178−1186 (2003). [123] Kawaguchi N., Sundberg C., Kveiborg M., Moghadaszadeh B., Asmar M., Dietrich N., et al. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function. J Cell Sci 116, 3893−3904 (2003). [124] Liu J., DeYoung S.M., Zhang M., Cheng A., Saltiel A.R. Changes in integrin expression during adipocyte differentiation. Cell Metabol 2, 165−177 (2005). [125] Qi, S. Yi, C. Ji, S. Fong, C.C. & Yang, M. Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl. Mater. Interfaces 1, 30–34 (2009). [126] Xie, X. Mechanical model of vertical nanowire cell penetration. Nanoletters 13, 6002-6008 (2013). [127] González-Cruz, R.D. Fonseca, V.C. & Darling, E.M. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. PNAS 109, E1523–E1529 (2012). [128] Solon, J. Levental, I. Sengupta, K. Georges, P.C. & Janmey, P.A. Fibroblast adaption and stiffness matching to soft elastic substrates. Biophys J. 93, 4453–4461 (2007). [129] Thomas, G. Burnham, N.A. Camesano, T.A. & Wen, Q. Measuring the mechanical properties of living cells using atomic force microscopy. J. Vis. Exp.76, e50497-1–8 (2013).
|