跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林欣熠
研究生(外文):Lin, Hsin-I
論文名稱:矽奈米線形貌控制觸發機械刺激效果以操縱人類間葉幹細胞之分化行為
論文名稱(外文):Engineering the Fates of Human Mesenchymal Stem Cells via the Morphological-induced Mechanical Stimulation Effects from Silicon-nanowires
指導教授:嚴大任
指導教授(外文):Yen, Ta-Jen
口試委員:葉均蔚王子威朱一民李光申何主亮
口試委員(外文):Yeh, Jien-WeiWang, Tzu-WeiChu, I-MingLee, Oscar Kuang-ShenHe, Ju-Liang
口試日期:2018-11-13
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:118
中文關鍵詞:人類間葉幹細胞生物物理性刺激矽奈米線成骨分化脂肪分化彈性係數細胞硬度
外文關鍵詞:human mesenchymal stem cells (hMSCs)biophysical stimulationsilicon-nanowires (SiNWs)osteogenicityadipogenicityspring constantcell stiffness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
透過機械性或化學性之細胞外刺激訊號施加於幹細胞,所產生一連串由細胞外基質傳遞進入細胞核的反應可以控制幹細胞分化命運。常見的高分子基材通過調配基材硬度已經被驗證出具有決定人類間葉幹細胞分化命運的能力。然而,具有奈米表面形貌矽基基材對於人類間葉幹細胞的效果則仍屬未知。本研究將採用無電鍍金屬沉積法來製備不同尺度的矽奈米線基材,且矽奈米線基材所呈現不同的彈性係數將作為唯一刺激人類間葉幹細胞的生物物理性刺激來源。藉此,本研究將證實矽奈米線基材如何將彈性係數的刺激導入,並驅使人類間葉幹細胞走向不同的分化方向。
首先,使用六個不同反應時間(第一組為最短反應時間依序到最長反應時間之第六組)於無電鍍金屬沉積法製備出六種具有不同尺度、立體表面形貌、緻密、垂直排列且單晶的矽基奈米線基材。實驗結果指出無電鍍金屬沉積法在固定的硝酸銀與氫氟酸電解液配方下對矽基平板基材呈現約1.06 um/min的線性蝕刻率。特別的是,當這些單根矽基奈米線生成後會因為毛細黏滯現象(Capillary stiction)聚合成一叢叢的矽基奈米線束。因此,針對這六組矽基奈米線基材的單根矽基奈米線以及矽基奈米線束取樣,並將量測其長度及直徑數據並投入Beam theory進行理論彈性係數之計算(KTheo, SiNW 以及 KTheo, bundles)。我們更進一步使用即時影像觀測用之穿透式顯微鏡(In-situ transmission electron microscope,In-situ TEM)進行奈米壓痕試驗儀(Picoindentor)量測出實際矽基奈米線束的彈性係數(KReal, bundles)。第一組到第六組之KTheo, SiNW、KTheo, bundles以及KReal, bundles全都呈現一致的趨勢:彈性係數與矽奈米線長度呈現反比的關係。也就是說憑藉對於無電鍍金屬沉積法的精準控制下,我們有能力調配出特定尺度以及彈性係數的矽基奈米線基材。然而在表面自由能方面,所有六組矽基奈米線基材都表現超親水性之表面特性,並不因為矽基奈米線基材之尺度變化有所差異。這超親水性表面將有助於細胞貼附的能力。
第二,當人類間葉幹細胞培養於矽基奈米線基材上約三天時,我們發現於各組矽基奈米線基材上所表現之存活率皆大於90%。這也就代表了矽基奈米線基材對於人類間葉幹細胞是不具備有細胞毒性的,這樣的結果也跟矽基平板基材相似。我們首先探討人類間葉幹細胞在沒有任何誘導分化成分的維持培養基下,矽基奈米線基材對於誘導人類間葉幹細胞進行成骨分化的機制。人類間葉幹細胞培養於六組矽基奈米線基材上均呈現圓球狀並收斂的細胞生長形貌。相反的,人類間葉幹細胞培養於矽基平板基材則是呈現平坦且外擴的細胞生長形貌。此外,第一組矽基奈米線基材(最短奈米線長度)顯示對於人類間葉幹細胞成骨基因表現量COL1a1以及RUNX2顯著的高於其他五組矽基奈米線基材以及矽基平板基材。深入發現培養於第一組矽基奈米線基材的人類間葉幹細胞具有最多的F-肌動蛋白(F-actin)、磷酸化局部黏著酵素(phosphorylated focal adhesion kinase,pFAK)、黏著斑蛋白(vinculin)以及alpha 2整聯蛋白(alpha 2 integrin)。這些蛋白的表現也就代表著當人類間葉幹細胞生長於第一組矽基奈米線基材時,進行了相當高程度的細胞骨骼的重整。也就是說第一組矽基奈米線基材所提供的最高程度的彈性係數,由細胞外開始提供有效的刺激,並驅使了人類間葉幹細胞進行細胞骨骼的重構,最後透過alpha 2/beta 1 異二聚體整聯蛋白誘導人類間葉幹細胞成功進行了成骨分化。
知悉第一組矽基奈米線基材能夠誘導人類間葉幹細胞成功走向成骨分化,其他五組矽基奈米線基材是否存在著其他可能性。因此我們便挑出成骨基因表現因子(COL1a1以及RUNX2)以及脂肪基因表現因子(PPARr 以及fatty acid-binding protein 4,FABP4)來了解六組矽基奈米線基材是否也存在有其他可能的人類間葉幹細胞分化方向。值得一提的是,無論在一般的維持培養基下或是含有脂肪分化因子的培養基下,第一組矽基奈米線基材都依舊顯著的驅動人類間葉幹細胞走向成骨分化。這也就證實第一組矽基奈米線基材具備強烈且穩定的成骨分化能力。另一方面,在一般的維持培養基下,各組的脂肪分化能力表現不夠顯著。因此,當我們將一般培養基換成含有脂肪分化因子的培養基後,發現PPARr 以及FABP4在第四組矽基奈米線基材才具備有顯著性差異的提升。這項結果說明了在不同的彈性係數的刺激下,矽基奈米線基材能夠操縱人類間葉幹細胞分化的方向。
最後,我們運用了原子力顯微鏡術定量的量測出成骨分化與脂肪分化之人類間葉幹細胞的細胞硬度。當人類間葉幹細胞培養並長在不同彈性係數的矽基奈米線基材上,不同彈性係數的刺激會讓人類間葉幹細胞進行不同程度的重構、再組合細胞骨骼、細胞形貌的改變乃至細胞基因表現的變化。因此我們發現人類間葉幹細胞生長於最大彈性係數的第一組矽基奈米線基材所表現的細胞硬度為最大。相反的,人類間葉幹細胞生長於最小彈性係數的第六組矽基奈米線基材所表現的細胞硬度為最小。其中,人類間葉幹細胞生長於第四組矽基奈米線基材所表現的細胞硬度居中。
Extracellular stimuli through mechanical and/or chemical approaches, imposed on stem cells and initiated the transductive signalings from extracellular matrix (ECM) to cell nuclei, determine the stem cell fates. Polymeric matrices, one of the major biophysical stimulating sources, are known to significantly affect the fates of human mesenchymal stem cells (hMSCs) by controlling the matrix stiffness. However, the stimulatory effects of nanotopographical silicon-based matrices on hMSCs have not been thoroughly investigated. In this study, the the electroless metal deposition method (EMD) was utilized to design the silicon-nanowires (SiNWs) matrices with various SiNWs dimnesions and the spring constant (KX), served as the unique and the only biophysical source to the hMSCs. This study will investigate how these SiNWs impose the unique biophysical signals to hMSCs and ultimately determine the fates of hMSCs.
First of all, six SiNWs groups, prepared by EMD, were designed to present various dimensions under six reaction periods. The experimental results revealed that stereo-topographical, dense, vertically aligned, single-crystalline SiNWs matrices were prepared by EMD and the EMD etching rate on Si was approximately 1.06 um/min under the constant concerntration of AgNO3/HF electrolyte. These SiNWs due the capillary stiction is easily formed the bundles while hMSCs were cultured under liquid envrionment. Then, these six SiNWs groups were measured their length and diameters of single SiNW and SiNWs bundles and calculated their theoretical spring constants based on the Beam theory (KTheo, SiNW and KTheo, bundles). Not only the theoretically calculations, but also the real spring constant performed from these SiNWs groups were considered in this study. In-situ transmission electron microscope (TEM) picoindenter was applied to measure the spring constant from these real SiNWs bundles (KReal, bundles). The respective KTheo, SiNW, KTheo, bundles and KReal, bundles values reinforce the fact that there is an inverse correlation between the spring constant and SiNWs length. For the surface free energy, all these SiNWs groups are all presented as superhydrophilicity no matter their SiNWs length or KX. This superhydrophilic surface on SiNWs will benefit in the cell adhesion of hMSCs.
Secondly, the hMSCs viability (cytotoxicity) on SiNWs matrices was demonstrated and found that living hMSCs cultured on SiNWs matrice after 72 h in percentage are above 90% and this performance proved the SiNWs matrix is non-cytotoxici and is quite similar to that of cells grown on 2D flat Si. After confirmed SiNWs is non-cytotoxic, hMSCs was subsequently cultured on these SiNWs groups with maintenance medium and decode the possibility of osteogenicity and the pathway of KX stimulating signals of SiNWs to hMSCs. hMSCs cultured on stereo SiNWs of different lengths in the absence of biochemical osteogenic induction cues displayed a spherical and less-elongated morphology and displayed an approximately 10% loss of cell viability compared to those grown on two-dimensional (2-D) flat Si. Moreover, osteogenic gene expression of COL1a1 and RUNX2 in hMSCs cultured on the shortest SiNWs (Group I) was significantly higher than those grown on the longer SiNWs and 2-D flat Si. hMSCs grown on shorter SiNWs also demonstrated higher expression levels for F-actin, phosphorylated focal adhesion kinase (pFAK), vinculin and alpha 2 integrin. Stereo-topographical cues provided by SiNWs are able to regulate osteogenic differentiation of hMSCs via cytoskeleton remodeling and this is correlated with the differential expression of alpha 2/beta 1 integrin heterodimers and the focal adhesion molecules pFAK and vinculin.
Moreover, this study is looking for more possible differentiating fates of hMSCs induced by SiNWs groups. Thereafter, to decode the fate regulations of SiNWs groups, the osteogenic markers (COL1a1 and RUNX2) and adipogenic markers [PPARr and fatty acid-binding protein 4 (FABP4)] were selected to determine the fates of hMSCs after SiNW stimulation. For oeteogenicity of hMSCs, COL1a1 and RUNX2 significantly presented the highest gene expression level on Group I SiNWs as well, even under adipogenic medium. For adipogenicity of hMSCs, PPARr and FABP4 were significantly enhanced by Group IV SiNWs under adipogenic medium. The results indicate that the SiNWs with different spring constants selectively triggered osteogenicity and adipogenicity in hMSCs.
Finally, the quantitatively measured cell stiffness from those fate-regulated fixed and living hMSCs on SiNWs matrices were evaluated by the atomic-force microscopy (AFM). While hMSCs grown on SiNWs groups with different stiffness, hMSCs received stress and stimulations and subsequently adapted to remodel and re-assemble their cytoskeleton, cell morphology, and gene expression. After this adapting process, the stiffness of such differentiated cells is also affected by substrate stiffness. The above results indicate that SiNWs with controllable spring constants are capable of regulating the osteogenicity and adipogenicity of hMSCs in vitro.
Aknowledgement I
中文摘要 III
Abstract VI
Content X
List of Figures XIII
List of Tables XVIII
Symbols XIX
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Stem cells 3
2.1.1 Structure and types of stem cells 4
2.1.2 Human mesenchymal stem cells and its functionalities 6
2.2 Extracellular stimulations to stem cells 9
2.2.1 Mechanical approach 9
2.2.2 Chemical approach 11
2.2.3 Electric field approach 14
2.3 Nanomaterials 16
2.3.1 0-D nanomaterials 17
2.3.2 1-D nanomaterials 20
2.3.3 2-D nanomaterials 23
2.3.4 3-D nanomaterials 24
2.4 Silicon-nanowires 26
2.4.1 Methods of silicon-nanowires fabrication 28
2.5 Motivation 36
Chapter 3 Experimental method 37
3.1 SiNWs fabrication and dimensional evaluations 37
3.1.1 Details of the SiNWs fabrication 37
3.1.2 Dimensional evaluations of six SiNWs groups 39
3.2 Characteristics of SiNWs 40
3.2.1 Wettability of flat Si and SiNWs 40
3.2.2 Sample preparation and spring constant of SiNWs measured by in-situ TEM picoindentor 41
3.2.3 Sample preparation and spring constant of SiNWs measured by in-situ SEM picoindentor 45
3.3 hMSCs culture process 47
3.3.1 hMSCs obtainment and filtration 47
3.3.2 Cell viability and adhesion ssay 48
3.3.3 Reverse transcription and quantitative real-time polymerase chain reaction (PCR) 49
3.3.4 Immunofluorescence staining 53
3.3.5 Quantification of immunofluorescence staining 54
3.3.6 Data analysis 54
3.3.7 hMSCs fixation process and cell morphology observations 54
3.4 Measurements of elasticity of hMSCs adhered on SiNWs 55
3.4.1 Immuno-staining living hMSCs on SiNWs groups 55
3.4.2 Measurements of elasticity of the fixed and living hMSCs on SiNWs groups 57
Chapter 4 Results and discussion 60
4.1 Morphological observations of SiNWs 60
4.1.1 SEM observations and dimensions of SiNWs 60
4.1.2 Wettability of flat Si and SiNWs 62
4.1.3 Theoretical calculations of spring constant among six SiNWs groups 63
4.1.4 Real measurements of spring constant among six SiNWs groups 65
4.2 hMSCs viability and adhesion on SiNWs 67
4.2.1 hMSCs viability on SiNWs 67
4.3 Osteogenic differentiation of hMSCs cultured on SiNWs group 68
4.3.1 Cellular morphology and spread area of the hMSCs growth on SiNWs stereotopography 68
4.3.2 Effect of SiNWs on the osteogenic differentiation of hMSCs 71
4.3.3 Cytoskeletal rearrangement of hMSCs grown on SiNWs groups 73
4.3.4 Integrin and focal adhesion kinase gene expression 75
4.3.5 Discussion–Osteogenic differentiated hMSCs on SiNWs groups 77
4.4 Fates of hMSCs stimulated by SiNWs groups 84
4.4.1 Osteogenicity and adipogenicity 84
4.5 Cell morphology and stiffness of hMSCs on SiNWs groups 87
4.6 Fate-regulation map of hMSCs fates triggered by SiNWs groups 90
Chapter 5 Conclusions 95
Reference 97
Achievements 115
• Education 115
• Work experience & expertise 115
• Research expertise 116
• Studying projects 116
• Lecturing Experiences 116
• Memberships/Honors 117
• Publication 118
[1] Zhao, C. Tan, A. Pastorin, G. & Ho, H.K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol. Adv. 31, 654−668 (2013).
[2] Song, M.J., Dean, D. & Tate, M.L.K. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds. Biomaterials 34, 5766−5775 (2013).
[3] Correia, C. et al. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterilia 8, 2483−2493 (2012).
[4] Wang, L., Johnson, J.A., Zhang, Q. & Beahm, E.K. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta Biomaterilia 9, 8921−8931 (2013).
[5] Portmann-Lanz, C. et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol. 194, 664–673 (2006).
[6] Serakinci, N. Fahrioglu, U. & Christensen, C. Mesenchymal stem cells, cancer challenges and new Directions. Eur. J. Cancer 50, 1522–1530 (2014).
[7] Zhao, L.X. et al. Modification of the brain-derived neurotrophic factor gene: a portal to transform mesenchymal stem cells into advantageous engineering cells for neuroregeneration and neuroprotection. Exp. Neurol. 190, 396– 406 (2004).
[8] Hadar, A. Philip, L. & Arnon N. Tissue regeneration potential in human umbilical cord blood. Best Pract. Res. Clin. Haematol. 23, 291−303 (2010).
[9] Marmotti, A. et al. Minced umbilical cord blood fragments as a source of cells for orthopaedic tissue engineering: an in vitro. Stem Cells Int. 2012, 1−13 (2012).
[10] Mabed, M. The Potential Utility of Bone Marrow or Umbilical Cord Blood Transplantation For the Treatment of Type I Diabetes Mellitus. Biol. Blood Marrow Transplant 17, 455−464 (2011).
[11] ven-Ram, S., Artym, V., & Yamada, K.M. Matrix control of stem cell fate. Cell 126, 645¬¬−647 (2006).
[12] Engler, A.J., Sen, S., Sweeney, H.L., & Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677¬¬−689 (2006).
[13] Discher, D.E., Janmey, P. & Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139−1143 (2005).
[14] Hronik-Tupaj, M., Rice, W. L., Crinin-Golomb, M., Kaplan, D.L. & Georgakoudi, I. Osteoblast differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed. Eng. Online 10, 1−22 (2011).
[15] Ong, W. K. et al. The activation of directional stem cell motility by green light-emitting diode irradiation. Biomaterials 34, 1911−1920 (2013).
[16] Choi, J.S. & Harley, B.A.C. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 33, 4460−4468 (2012).
[17] Qutachi, O., Shakesheff, K.M. & Buttery, L.D.K. Delivery of definable number of drug or growth factor loaded poly (DL-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates. J. Control Release 168, 18−27 (2013).
[18] Mathews, S. Bhonde, R. Gupta, P. K. & Totey, S. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Differentiation 84, 185−192 (2012).
[19] Yu, D. et al. Blockade of Peroxynitrite-Induced Neural Stem Cell Death in the Acutely Injured Spinal Cord by Drug-Releasing Polymer. Stem Cells 27, 3121−3121 (2009).
[20] Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103−1108 (2009).
[21] Curtis, A. & Wilkinson, C. Topographical control of cells. Biomaterials 18, 1573−1583 (1997).
[22] Discher, D.E., Mooney, D.J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673−1677 (2009).
[23] Kuo, S.W. et al. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials 33, 5013−5022 (2012).
[24] Serakinci N., Fahrioglu U. and Christensen R. Mesenchymal stem cells, cancer challenges and new directions. European Journal of Cancer 50, 1522−1530 (2014).
[25] Ankey, R.A. New Technologies: Ethics of Stem Cell Research, International Encyclopedia of Public Health, 533–536 (2008).
[26] McLaren, A. A Scientist’s View of the Ethics of Human Embryonic Stem Cell Research Cell Stem Cell 1, 23–26 (2000).
[27] Fuchs, E. and Segre, J.A. Stem Cells: A New Lease on Life Cell 100, 143–155 (2000).
[28] Dai, L.J., Moniri, M.R., Zeng, Z.R., Zhou, J.X., Rayat, J. and Wamock, G.L. Potential implications of mesenchymal stem cells in cancer therapy Cancer Letters 305, 8–20 (2011).
[29] Vija, L., Farge, D., Gautier, J.F., Vexiau, P., Dumitrache, C., Bourgarit, A., Verrecchia, F. and Larghero, J. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes Diabetes & Metabolism 35, 85–93 (2009).
[30] Ozawa, K., Sato, K., Oh, I., Ozaki, K., Uchibori, R., Obara, Y., Kikuchi, Y., Ito, T., Okada, T., Urabe, M., Mizukami, H. and Kume, A. Cell and gene therapy using mesenchymal stem cells (MSCs) Journal of Autoimmunity 30, 121–127 (2008).
[31] Shah, K. Mesenchymal stem cells engineered for cancer therapy Advanced Drug Delivery Reviews 64, 739–748 (2012).
[32] Friedenstein, A.J., Chailakhyan, R.K. and Gerasimov, U.V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers Cell & Tissue Kinetics 20, 263–272 (1987).
[33] Kim, S.M., Jung, J.U., Ryu, J.S., Jin, J.W., Yang, H.J., Ko, K., You, H.K., Jung, K.Y. and Choo, Y.K. Effects of gangliosides on the differentiation of human mesenchymal stem cells into osteoblasts by modulating epidermal growth factor receptors Biochemical and Biophysical Research Communications 371, 866–871 (2008).
[34] Ghaedi, M., Tuleuova, N., Zern, M.A., Wu, J. and Revzin, A. Bottom-up signaling from HGF-containing surfaces promotes hepatic differentiation of mesenchymal stem cells Biochemical and Biophysical Research Communications 407, 295–300 (2011).
[35] Mohsin, S., Shams, S., Nasir, G.A., Khan, M., Awan, S.J., Khan, S.N. and Riazuddin, S. Enhanced hepatic differentiation of mesenchymal stem cells after pretreatment with injured liver tissue Differentiation 81, 42–48 (2011).
[36] Danišovič, L’., Varga, I., Polák, Š. Growth factors and chondrogenic differentiation of mesenchymal stem cells Tissue and Cell 44, 69–73 (2012).
[37] Wu, S.L., Zhang, T., Zheng, R.T. and Cheng, G.A. Facile morphological control of single-crystalline silicon nanowires Applied Surface Science 258, 9792– 9799 (2012).
[38] Charbord, P. Bone marrow mesenchymal stem cells: historical overview and concepts”, Human Gene Therapy 21, 1045–1056 (2010).
[39] Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow J Cell Sci 116 1827–1835 (2003)
[40] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesen- chymal stem cells Science 284, 143–147 (1999).
[41] Griffiths M.J., Bonnet D. and Janes S.M. Stem cells of the alveolar epithelium Lancet 366, 249–260 (2005).
[42] Mimeault M., Hauke R., Batra S.K. Stem cells: a revolution in therapeutics – recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies Clin Pharmacol Ther 82, 252–264 (2007).
[43] Mouiseddine M., Francois S., Semont A., Sache A., Allenet B. and Mathieu N., et al. Human mesenchymal stem cells home specif- ically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model Br J Radiol 80, S49–S55 (2007).
[44] Franßcois S., Mouiseddine M., Mathieu N., Semont A., Monti P. and Dudoignon N., et al. Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model Ann Hematol 86, 1–8 (2007).
[45] Lee J.W., Fang X., Gupta N., Serikov V. and Matthay M.A. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin- induced acute lung injury in the ex vivo perfused human lung Proc Natl Acad Sci USA 106,16357–16362 (2009).
[46] Matthay M.A. and Idell S. Update on acute lung injury and critical care medicine Am J Respir Crit Care Med 181, 1027–1032 (2010).
[47] Liu, S.Q., Tian, Q., Hedrick, J.L., Hui, J.H.P., Ee, P.L.R. and Yang, Y.Y. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage Biomaterials 31, 7298–7307 (2010).
[48] Li, Y., Chu, J.S., Kurpinski, K., Li, X., Bautista, D.M., Yang, L., Sung, K.L.P. and Li, S. Biophysical Regulation of Histone Acetylation in Mesenchymal Stem Cells Biophysical Journal 100, 1902–1909 (2011).
[49] Her, G.J., Wu, H.C., Chen, M.H., Chen, M.Y., Chang, S.C. and Wang, T.W. Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages Acta Biomaterialia 9, 5170–5180 (2013).
[50] Wang, P.Y., Tsai, W.B. and Voelcker, N.H. Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients Acta Biomaterialia 8, 519–530 (2012).
[51] Even-Ram, S., Artym, V. and Yamada, K.M. Matrix control of stem cell fate Cell 126, 645–647 (2006).
[52] Kim, M.S., Park, S.J., Gu, B.K. and Kim, C.H. Inter-connecting pores of chitosan scaffold with basic fibroblast growth factor modulate biological activity on human mesenchymal stem cells Carbohydrate Polymers 87, 2683–2689 (2012).
[53] Mathews, S., Bhonde, R., Gupta, P.K. and Totey, S. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells Differentiation 84, 185–192 (2012).
[54] Cheng, T., Yang, C., Weber, N., Kim, H.T. and Kuo, A.C. Fibroblast growth factor 2 enhances the kinetics of mesenchymal stem cell chondrogenesis Biochemical and Biophysical Research Communications 426, 544–550 (2012).
[55] Indrawattana, N., Chen, G., Tadokoro, M., Shann, L.H., Ohgushi, H., Tateishi, T., Tanaka, J. and Bunyaratvej, A. Growth factor combination for chondrogenic induction from human mesenchymal stem cell Biochemical and Biophysical Research Communications 320, 914–919 (2004).
[56] Jiang, X., Cao, H.Q., Shi, L.Y., Ng, S.Y., Stanton, L.W. and Chew, S.Y. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment Acta Biomaterialia 8, 1290–1302 (2012).
[57] Shi, X., Wang, Y., Varshney, R.R., Ren, L., Gong, Y. and Wang, D.A. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro European Journal of Pharmaceutical Sciences 39, 59–67 (2010).
[58] Brammer, K.S., Choi, C., Frandsen, C.J., Oh, S. and Jin, S. Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation Acta Biomaterialia 7, 683–690 (2011).
[59] Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Okumura, M. and Fujinaga, T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis Biotechnology and Bioengineering 93, 1152–1163 (2006).
[60] Noth, U., Rackwitz, L., Heymer, A., Weber, M., Baumann, B., Steinert, A., Schütze, N., Jakob, F. and Eulert, J. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels Journal of Biomedical Materials Research Part A 83, 626–635 (2007).
[61] Collins, M.N. and Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering—A review Carbohydrate Polymers 92, 1262–1279 (2013).
[62] Dash, M., Chiellini, F., Ottenbrite, R.M. and Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications Progress in Polymer Science 36, 981–1014 (2011).
[63] Sinha, V.R., Singla, A.K., Wadhawan, S., Kaushik, R., Kumria, R., Bansal, K. and Dhawan, S. Chitosan microspheres as a potential carrier for drugs International Journal of Pharmaceutics 274, 1–33 (2004).
[64] Koide, T. Triple helical collagen-like peptides: engineering and applications in matrix biology Connective Tissue Research 46, 131–141 (2005).
[65] Hess, R., Jaeschke, A., Neubert, H., Hintze, V., Moeller, S., Schnabelrauch, Hans-Peter Wiesmann, M., Hart, D.A. and Scharnweber, D. Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs Biomaterials 33, 8975–8985 (2012).
[66] Genovese, J.A., Spadaccio, C., Rivello, H.G., Toyoda, Y. and Patel, A.N. Electrostimulated bone marrow human mesenchymal stem cells produce follistatin Cytotherapy 11, 448–456 (2009).
[67] Aubin, J.E. Regulation of osteoblast formation and function Reviews in Endocrine & Metabolic Disorders 2, 81–94 (2001).
[68] Lin H.I. et al. Functional studies of anodic oxidized b-type-Ti-28NB-11Ta-8Zr alloy for mechanical, in-vitro and antibacterial capability. Scientific reports 8, 14253-1–14253-11 (2018).
[69] Martinez-Gutierrez, F. et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29, 651–660 (2013).
[70] Lee J. et al. The control pf cell adhesion and viability by zinc oxide nanorods. Biomaterials 29, 3743–3749 (2008).
[71] Choi C.H., Hagvall S.H., Wu B.M., Dunn J.C., Beygui R.E. and Kim C.J.. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28, 1672–1679 (2007).
[72] Gonsalves K.E., Halberstadt C.R., Laurencin C.T. and Nair L.S. Biomedical nano- structures. New York: John Wiley & Sons Inc. (2007).
[73] Girard PP, Cavalcanti-Adam EA, Kemkemer R, Spatz JP. Cellular chemo- mechanics at interfaces: sensing, integration and response. Soft Matter 3, 307–326 (2007).
[74] Lim J.I., Yu B., Woo K.M. and Lee Y.K. Immobilization of TiO2 nanofibers on titanium plates for implant applications. Applied Surface Science 255, 2456–2460 (2008).
[75] Angelis F.D., MAlerba M., Patrini M. Miele E., Das G., Toma A., Zaccaria P. and Fabrizio E.D., 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano letter 13, 3553–3558 (2013).
[76] Zhao, L., Liu, L., Wu, Z., Zhang, Y. and Chu, P.K. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation, Biomaterials 33, 2629–2641 (2012).
[77] Tay, C.Y., Gu, H., Leong, W.S., Yu, H., Li, H.Q., Heng, B.C., Tantang, H., Loo, S.C.J., Li, L.J. and Tan, L.P. Cellular behavior of human mesenchymal stem cells cultured on single-walled carbon nanotube film. Carbon 48, 1095–1104 (2010).
[78] Rodrigues, A.A., Batista, N.A., Bavaresco, V.P., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., Santos Jr., A.R. and Belangero, W.D. Polyvinyl alcohol associated with carbon nanotube scaffolds for osteogenic differentiation of rat bone mesenchymal stem cells. Carbon 50, 450–459 (2012).
[79] Hu, Y., Cai, K., Luo, Z., Xu, D., Xie, D., Huang, Y., Yang, W. and Liu, P. TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomaterialia 8, 439–448 (2012).
[80] Zhao, L., Wang, H., Huo, K., Zhang, X., Wang, W., Zhang, Y., Wu, Z. and Chu, P.K. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates Biomaterials 34, 19–29 (2013).
[81] Pui, T.S., Agarwal, A., Ye, F., Huang, Y. and Chen, P. Nanoelectronic detection of triggered secretion of proinflammatory cytokines using CMOS compatible silicon nanowires. Biosensors and Bioelectronics 26, 2746–2750 (2011).
[82] Chen, C.C., Chen, Y.Z., Huang, Y.J. and Sheu, J.T. Using silicon nanowire devices to detect adenosine triphosphate liberated from electrically stimulated HeLa cells. Biosensors and Bioelectronics 26, 2323–2328 (2011).
[83] Chen, K.I, Li, B.R. and Chen, Y.T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6, 131–154 (2011).
[84] Wagner R.S. and Ellis W.C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied physical letters 4, 89-90 (1964).
[85] Yan H.F., Xing Y.J., Hang Q.L., Yu D.P., Wang Y.P., Xu J., Xi Z.H. and Feng S.Q. Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism. Chemical physical letters 323, 224–228 (2000).
[86] Yao, Y., Li, F. and Lee, S.T. Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts Chemical Physics Letters 406, 381–385 (2005).
[87] Peng, K.Q., Hu, J.J., Yan, Y.J., Wu, Y., Fang, H., Xu, Y., Lee, S.T. and Zhu, J. Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles Advanced Functional Materials, 16, 387–394 (2006).
[88] Peng, K.Q., Fang, H., Hu, J., Wu, Y., Zhu, J., Yan, Y. and Lee, S. Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution Chemistry– A European Journal, 12, 7942–7947 (2006).
[89] Chen C.Y., Wu C.S., Chou C.J., Yen T.J. Morphological control of single-crystalline silicon nanowire arrays near room temperature. Adv Mater 20, 3811−3815 (2008).
[90] Timoshenko S. History of strength of materials, McGraw-Hill New York (1953).
[91] Lee O.K. et al. Fluvastatin and lovastatin but not pravastatin induce neuroglial differentiation in human mesenchymal stem cells. J Cell Biochem 93, 917−928 (2004).
[92] Lee K.D. et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275−1284 (2004).
[93] Lee J. et al. The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29, 3743−3749 (2008).
[94] Shih Y.R., Chen C.N., Tsai S.W., Wang Y.J., Lee O.K. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers Stem Cells 24, 2391−2397 (2006).
[95] Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM.
[96] Sneddon I.N. The relation between load and penetration in the axisymetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science 3, 47−57 (1965).
[97] Wennerberg A. et al. Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Implants Res 25 1041−1050 (2014).
[98] Lampin M., Warocquier‐Clérout R., Legris C., Degrange M., Sigot‐Luizard M.F. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res 36, 99–108 (1997).
[99] Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477−1508 (2003).
[100] Ali, S.M., Jennings, J.M., Phinney, L.M. Temperature dependence for in-use stiction of polycrystalline silicon MEMS cantilevers. Sensors and Actuators A: Physical 113, 60−70 (2004).
[101] Tziampazis E., Kohn J., Moghe P.V. PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration. Biomaterials 21, 511−520 (2000).
[102] Liu L., Sheardown H. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Biomaterials 26, 233−44 (2005).
[103] Park J.K., Kim Y.J., Yeom J., Jeon J.H., Yi G.C., Je J.H., et al. The topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Adv Mater 22, 4857−4861 (2010).
[104] Lee J., Kang B.S., Hicks B., Chancellor Jr T.F., Chu B.H., Wang H.T., et al. The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29, 3743−3749 (2008).
[105] Park J., Bauer S., von der Mark K., Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7, 1686−1691 (2007).
[106] Kim W., Ng J.K., Kunitake M.E., Conklin B.R., Yang P. Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129, 7228−7229 (2007).
[107] Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60, 24−34 (2005).
[108] Discher D.E., Janmey P., Wang Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139−1143 (2005).
[109] Rodriguez J.P., Gonzalez M., Rios S., Cambiazo V. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem 93, 721−731 (2004).
[110] Geoffrey M.C. The cell: a molecular approach. ASM Press; p. 673 Harvard Medical school (1997).
[111] Chen C.S., Tan J., Tien J. Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng 6, 275−302 (2004).
[112] Geiger B., Bershadsky A., Pankov R., Yamada K.M. Transmembrane crosstalk between the extracellular matrixecytoskeleton crosstalk. Nat Rev Mol Cell Biol 2, 793−805 (2001).
[113] Cary L.A., Han D.C., Guan J.L. Integrin-mediated signal transduction pathways. . 14, 1001−1009 (1999).
[114] Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673−687 (2002).
[115] Salasznyk R.M., Klees R.F., Hughlock M.K., Plopper G.E. ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Comm Adhes 11, 137−153 (2004).
[116] Salasznyk R.M., Williams W.A., Boskey A., Batorsky A., Plopper G.E. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol 2004, 24−34 (2004).
[117] Salasznyk R.M., Klees R.F., Williams W.A., Boskey A., Plopper G.E. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res 313, 22−37 (2007).
[118] Giancotti F.G., Tarone G. Positional control of cell fate through joint integrin/ receptor protein kinase signaling. Annu Rev Cell Dev Biol 19, 173−206 (2003).
[119] Olivares-Navarrete R., Raz P., Zhao G., Chen J., Wieland M., Cochran D.L., et al. Integrin alpha2beta1 plays a critical role in osteoblast response to micron- scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci USA 105, 15767−15772 (2008).
[120] Shih Y.R., Tseng K.F., Lai H.Y., Lin C.H., Lee O.K. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res (2010).
[121] Hamidouche Z., Fromigue O., Ringe J., Haupl T., Vaudin P., Pages J.C., et al. Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis. Proc Natl Acad Sci USA 106, 18587−18591 (2009).
[122] Farnier C., Krief S., Blache M., Diot-Dupuy F., Mory G., Ferre P., et al. Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int J Obes Relat Metab Disord 27, 1178−1186 (2003).
[123] Kawaguchi N., Sundberg C., Kveiborg M., Moghadaszadeh B., Asmar M., Dietrich N., et al. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function. J Cell Sci 116, 3893−3904 (2003).
[124] Liu J., DeYoung S.M., Zhang M., Cheng A., Saltiel A.R. Changes in integrin expression during adipocyte differentiation. Cell Metabol 2, 165−177 (2005).
[125] Qi, S. Yi, C. Ji, S. Fong, C.C. & Yang, M. Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl. Mater. Interfaces 1, 30–34 (2009).
[126] Xie, X. Mechanical model of vertical nanowire cell penetration. Nanoletters 13, 6002-6008 (2013).
[127] González-Cruz, R.D. Fonseca, V.C. & Darling, E.M. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. PNAS 109, E1523–E1529 (2012).
[128] Solon, J. Levental, I. Sengupta, K. Georges, P.C. & Janmey, P.A. Fibroblast adaption and stiffness matching to soft elastic substrates. Biophys J. 93, 4453–4461 (2007).
[129] Thomas, G. Burnham, N.A. Camesano, T.A. & Wen, Q. Measuring the mechanical properties of living cells using atomic force microscopy. J. Vis. Exp.76, e50497-1–8 (2013).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊