跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/14 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:巫定洲
研究生(外文):Wu, Ding-Jhou
論文名稱:利用再生稻殼一步合成矽/碳化矽/碳複合材料應用於鋰離子電池負極研究
論文名稱(外文):One Step Formation of Si/SiC/C Composite Derived from Recycled Rice Husk as Secondary Lithium Ion Battery
指導教授:闕郁倫
指導教授(外文):Chueh, Yu-Lun
口試委員:何頌賢張培俊顏文群
口試委員(外文):Ho, Sung-HsienChang, Pei-ChunYen, Wen-Chun
口試日期:2018-11-19
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:65
中文關鍵詞:稻殼鋰電池矽負極電化學還原
外文關鍵詞:rice-husklithium-ion-batterysilicon-anodeelectrochemical-reduction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
矽是現今發展鋰離子電池最具潛力的負極材料之一,因為矽負極有較商用的石墨負級材料高十倍的理論電容量(3579 mAh / g)。然而矽材料在朝商業化邁進的道路上有兩大主要的問題分別為奈米結構製程複雜導致成本高昂以及壽命不佳。此研究中,我們研究了直接從稻殼回收提純奈米氧化矽多孔顆粒接著以熔融鹽還原法製成矽奈米線的方法,此方法不僅可以製備奈米結構的矽用以改善體積膨脹問題,更可以藉由廢棄農作物回收來降低成本。全球每年廢棄稻殼產量約為1.5億噸,而用途卻不廣泛。經研究發現稻殼中含有很高的矽含量(約含10-40%),而且稻殼本身具有獨特的奈米多孔結構。我們實驗的第一步,通過稀釋的氯化氫水溶液浸泡除去稻殼中的金屬離子,接著經由攝氏七百度焚燒後可得到具有奈米結構的二氧化矽,此外在真空環境下焚燒可以得到氧化矽以及碳的混合粉末。接著,我們通過電化學還原法將二氧化矽轉化為矽,此製程溫度遠低於現今商用的碳還原法(需2000度高溫),此外,我們另外將氧化矽以及碳的混合粉末進行還原可以得到矽/碳化矽/碳(部分石墨化)的粉末用以改善純矽粉末的體積膨脹以及導電度問題。此研究不僅具有成本效益,同時又為綠色能源並且在工業上有大規模合成可能性。
Silicon is one of the most promising anode material candidates for lithium ion batteries because of its high specific capacity (3579 mAh/g), which is ten times higher than existing graphite anodes. One of the most important issues toward commercialization is the high cost of nanostructured silicon related to the complex fabrication amd expansive raw materials.
In this work, we demonstrate the recycling of pure silicon nanowires and Si/SiC/C composite from rice husks (RHs) directly, which is an abundant agricultural byproduct (108 tons/year) in worldwide. Besides, the massive amount of RHs has unique nanoporous structure on the RHs to preform the function as protection and ventilation. In the first step of our experiment, the metal ions in the RHs by HCl leaching were removed and then incinerate the leached RHs to produce silica with nanostructure or silica and carbon mixture under vacuum condition. Next step, the two different precursor are converted to silicon nanowires and Si/SiC/C composite by electrochemical reduction method, which is a potential process for large scale reduction in a relative low temperature compared with conventional carbothermal reduction. Owing to the original carbon and silicon mixture source from RHs, these recovered Si/SiC/C composite shows comparable performance as lithium ion battery anodes, with reversible capacity 476 mAh/g after 100 cycles. Recycling RHs as the source of silicon , this work presents a process to produce Si based Li-ion battery with cost effective, energy-efficient, green, and potential of large scale synthesis in industry.
Content I
Figure III
Tables IX
Abstract X
摘要 XII
Acknowledgement XIII
Chapter 1 Introduction 1
1.1 Lithium ion battery 1
1.1.1 lithium ion battery overview 1
1.1.2 Working mechanism of lithium ion battery 2
1.1.3 Developments in anode material for lithium ion battery 3
1.1.4 Silicon as the anode of lithium ion battery 6
1.2 Introduction of RHs 9
1.2.1 The potential application of rice husk 10
1.2.2Developments of RHs as the source of Si anode 13
1.3 Introduction of FFC Cambridge method 19
1.3.1 Working mechanism of FFC Cambridge method 20
1.3.2 Development of FFC Cambridge method in reduction of Si 21
Chapter 2 motivation 26
2.1 The superiority of Si-based anode materials 26
2.2 The potential of recycling rice husk 27
Chapter 3 Material analysis method and technology 28
3.1 Raman Spectroscopy 28
3.2 X-ray Photoelectron Spectroscopy (XPS) 30
3.3 Scanning Electron Spectroscopy (SEM) 31
3.4 Transmission Electron Microscopy (HR-TEM) 31
3.5 Powder X-ray Diffraction (XRD) 33
3.6 Thermal Gravimetric Analysis (TGA) 33
3.7 Bipotentiostat (Model Chi 760e) 34
3.7 Coin cell testing system (LANHE CT2001A) 35
3.8 Electrochemical Impedance Spectroscopy (EIS) 36
Chapter 4 Results and discussion 38
4.1 The extraction of silicon oxide and carbon from rice husks 38
4.1.1 Experimental design 38
4.1.2 Material Characterization 38
4.2 The reduction of silica by FFC Cambridge method 42
4.2.1 Experimental design 42
4.2.2 Material Characterization 44
4.3 The reduction of silica/carbon by FFC Cambridge method 48
4.3.1 Experimental design 48
4.3.2 Material Characterization 49
4.3.3 Battery and electrochemical performance 56
Chapter 5 Conclusion and future works 60
Chapter 6 Reference 61
[1] B. U. G. (BUG), "Global Battery Markets," 2016.
[2] J. W. Choi and D. Aurbach, "Promise and reality of post-lithium-ion batteries with high energy densities," Nature Reviews Materials, vol. 1, p. 16013, 2016.
[3] Reve, "Growth in lithium ion batteries for the vehicle electrification and grid energy storage sectors was significant in 2014," Navigant Research website, 2015.
[4] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, pp. 6332-6341, 2010.
[5] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. P. Zaccaria, and C. Capiglia, "Review on recent progress of nanostructured anode materials for Li-ion batteries," Journal of power sources, vol. 257, pp. 421-443, 2014.
[6] S. W. Lee, M. T. McDowell, J. W. Choi, and Y. Cui, "Anomalous shape changes of silicon nanopillars by electrochemical lithiation," Nano letters, vol. 11, pp. 3034-3039, 2011.
[7] I. Ryu, J. W. Choi, Y. Cui, and W. D. Nix, "Size-dependent fracture of Si nanowire battery anodes," Journal of the Mechanics and Physics of Solids, vol. 59, pp. 1717-1730, 2011.
[8] S. W. Lee, H.-W. Lee, I. Ryu, W. D. Nix, H. Gao, and Y. Cui, "Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction," Nature communications, vol. 6, p. 7533, 2015.
[9] Y. Jin, B. Zhu, Z. Lu, N. Liu, and J. Zhu, "Challenges and Recent Progress in the Development of Si Anodes for Lithium‐Ion Battery," Advanced Energy Materials, vol. 7, p. 1700715, 2017.
[10] M. Ashuri, Q. He, and L. L. Shaw, "Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter," Nanoscale, vol. 8, pp. 74-103, 2016.
[11] L.-F. Cui, Y. Yang, C.-M. Hsu, and Y. Cui, "Carbon− silicon core− shell nanowires as high capacity electrode for lithium ion batteries," Nano letters, vol. 9, pp. 3370-3374, 2009.
[12] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, et al., "Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control," Nature nanotechnology, vol. 7, p. 310, 2012.
[13] N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H.-W. Lee, W. Zhao, et al., "A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes," Nature nanotechnology, vol. 9, p. 187, 2014.
[14] R. Pode, "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, vol. 53, pp. 1468-1485, 2016.
[15] A. Yaumi, M. A. Bakar, and B. Hameed, "Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed," Energy, vol. 155, pp. 46-55, 2018.
[16] D. S. Jung, M.-H. Ryou, Y. J. Sung, S. B. Park, and J. W. Choi, "Recycling rice husks for high-capacity lithium battery anodes," Proceedings of the National Academy of Sciences, vol. 110, pp. 12229-12234, 2013.
[17] A. Xing, S. Tian, H. Tang, D. Losic, and Z. Bao, "Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries," RSC Advances, vol. 3, p. 10145, 2013.
[18] Y.-C. Zhang, Y. You, S. Xin, Y.-X. Yin, J. Zhang, P. Wang, et al., "Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries," Nano Energy, vol. 25, pp. 120-127, 2016.
[19] W. C. Cho, H. J. Kim, H. I. Lee, M. W. Seo, H. W. Ra, S. J. Yoon, et al., "5L-Scale magnesio-milling reduction of nanostructured SiO2 for high capacity silicon anodes in Lithium-ion batteries," Nano letters, vol. 16, pp. 7261-7269, 2016.
[20] N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, "Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes," Scientific reports, vol. 3, p. 1919, 2013.
[21] W. Xiao and D. Wang, "The electrochemical reduction processes of solid compounds in high temperature molten salts," Chem Soc Rev, vol. 43, pp. 3215-28, May 21 2014.
[22] W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G. Z. Chen, "Electrochemically driven three‐phase interlines into insulator compounds: electroreduction of solid SiO2 in molten CaCl2," ChemPhysChem, vol. 7, pp. 1750-1758, 2006.
[23] W. Xiao, X. Jin, Y. Deng, D. Wang, and G. Z. Chen, "Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry," Journal of Electroanalytical Chemistry, vol. 639, pp. 130-140, 2010.
[24] D. Wang, X. Jin, and G. Z. Chen, "Solid state reactions: an electrochemical approach in molten salts," Annual Reports Section "C" (Physical Chemistry), vol. 104, p. 189, 2008.
[25] T. Nohira, K. Yasuda, and Y. Ito, "Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon," Nat Mater, vol. 2, pp. 397-401, Jun 2003.
[26] W. Xiao, X. Jin, and G. Z. Chen, "Up-scalable and controllable electrolytic production of photo-responsive nanostructured silicon," Journal of Materials Chemistry A, vol. 1, p. 10243, 2013.
[27] W. Xiao, J. Zhou, L. Yu, D. Wang, and X. W. Lou, "Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium-Storage Properties," Angew Chem Int Ed Engl, vol. 55, pp. 7427-31, Jun 20 2016.
[28] M. Osiak, H. Geaney, E. Armstrong, and C. O'Dwyer, "Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance," Journal of Materials Chemistry A, vol. 2, pp. 9433-9460, 2014.
[29] Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, and Y. Cui, "Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes," Nature Energy, vol. 1, p. 15029, 2016.
[30] M. Ko, S. Chae, J. Ma, N. Kim, H.-W. Lee, Y. Cui, et al., "Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries," Nature Energy, vol. 1, p. 16113, 2016.
[31] H. J. Kim, J. H. Choi, and J. W. Choi, "Rice husk-originating silicon–graphite composites for advanced lithium ion battery anodes," Nano convergence, vol. 4, p. 24, 2017.
[32] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, "Studying disorder in graphite-based systems by Raman spectroscopy," Phys Chem Chem Phys, vol. 9, pp. 1276-91, Mar 21 2007.
[33] D. Price, "Thermogravinetry," 2006.
[34] Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, and Y. Liu, "Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading," Journal of The Electrochemical Society, vol. 160, pp. A553-A558, 2013.
[35] T. M. Besmann and K. E. Spear, "Thermochemical modeling of oxide glasses," Journal of the American Ceramic Society, vol. 85, pp. 2887-2894, 2002.
[36] A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat‐Sauvain, N. Wyrsch, et al., "Thin‐film silicon solar cell technology," Progress in photovoltaics: Research and applications, vol. 12, pp. 113-142, 2004.
[37] X. Jin, R. He, and S. Dai, "Electrochemical Graphitization: An Efficient Conversion of Amorphous Carbons to Nanostructured Graphites," Chemistry, vol. 23, pp. 11455-11459, Aug 25 2017.
[38] B. Wang, D. Wolfe, M. Terrones, M. Haque, S. Ganguly, and A. Roy, "Electro-graphitization and exfoliation of graphene on carbon nanofibers," Carbon, vol. 117, pp. 201-207, 2017.
[39] J. K. Yoo, J. Kim, Y. S. Jung, and K. Kang, "Scalable fabrication of silicon nanotubes and their application to energy storage," Advanced Materials, vol. 24, pp. 5452-5456, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊