|
1. C. Kyriakakis, “Fundamental and Technological Limitations of Immersive Audio Systems,” Proceedings of the IEEE 86(5), 941-951(1998). 2. R. Nicol, AES Monograph:Binaural Technology, Audio Engineering Society, Now York, (2010). 3. B. Gardner and K. Martin, “HRTF Measurements of KEMAR Dummy-Head Microphone,” MIT Media Lab, 1994, http://sound.media.mit.edu/KEMAR.html 4. B. B. Bauer, ‘‘Stereophonic earphones and binaural loudspeakers,’’ J. Audio Eng. Soc. 9(2), 148-151 (1961). 5. M. R. Schroeder and B. S. Atal, ‘‘Computer simulation of sound transmission in rooms,’’ IEEE Conv. Record. 7, 150-155 (1963). 6. P. Damaske and V. Mellert, ‘‘A procedure for generating directionally accurate sound images in the upper- half space using two loudspeakers,’’ Acustica 22, 154-162 (1969). 7. D. H. Cooper, “Calculator program for head-related transfer functions,” J. Audio Eng. Soc. 30, 34-38 (1982). 8. W. G. Gardner, “Transaural 3D audio,” MIT Media Laboratory Tech. Report 342 (1995). 9. D. H. Cooper and J. L. Bauck, “Prospects for transaural recording,” J. Audio Eng. Soc. 37(1/2), 3-19 (1989). 10. J. L. Bauck and D. H. Cooper, “Generalized transaural stereo and applications,” J. Audio Eng. Soc. 44(9), 683-705 (1996). 11. D. B. Ward and G. W. Elko, “Optimal loudspeaker spacing for robust crosstalk cancellation,” Proc. ICASSP 98 IEEE, Seattle, WA,3541-3544, (1998). 12. D. B. Ward and G. W. Elko, “Effect of loudspeaker position on the robustness of acoustic crosstalk cancellation,” IEEE Signal Process. Lett. 65, 106-108 (1999). 13. M. R. Bai, C. W. Tung, and C. C. Lee, “Optimal design of loudspeaker arrays for robust cross-talk cancellation using the Taguchi method and the genetic algorithm,” J. Acoust. Soc. Am. 117(5), 2802-2813 (2005). 14. T. Sporer, “Wave field synthesis—Generation and reproduction of natural sound environments,” in Proceedings of the 7th International Conference on Digital Audio Effects, Naples, Italy (2004). 15. S. Spors, R. Rabenstein, and J. Ahrens, “ The theory of wave field synthesis revisited,” in Audio Engineering Society Convention Paper, Amsterdam, the Netherlands (2008). 16. D. de Vries, AES Monograph: Wave Field Synthesis (Audio Engineering Society, New York, 2009), 95 pp. 17. F. M. Fazi, “ Sound field reproduction,” Ph.D. thesis, University of Southampton, 2010. 18. J. B. Fahnline and G. H. Koopmann, “A numerical solution for the general radiation problem based on the combined methods of superposition and singular-value decomposition,” J. Acoust. Soc. Am. 90, 2808-2819 (1991). 19. L. Song, G. H. Koopmann, and J. B. Fahnline, “Numerical errors associated with the method of superposition for computing acoustic fields,” J. Acoust. Soc. Am. 89, 2625-2633 (1991). 20. M. Kolundzija, C. Faller, and M. Vetterli, “ Sound field reconstruction: An improved approach for wave field synthesis,” in Proceedings of the 126th AES Convention, Audio Engineering Society, Munich, Germany (2009). 21. M. Kolundzija, C. Faller, and M. Vetterli, “ Designing practical filters for sound field reconstruction,” in Proceedings of the 127th AES Convention, Audio Engineering Society, New York (2009). 22. M. A. Gerzon, “ Ambisonic in multichannel broadcasting and video,” J. Audio Eng. Soc. 33, 859-871 (1985). 23. O. Kirkeby, P. A. Nelson, and H. Hamada, “Fast Deconvolution of Multichannel Systems Using Regularization,” IEEE Trans. Speech and Audio Processing. 6, 189-195, 1998. 24. O. Kirkeby and P. A. Nelson, “Digital Filter Design for Inversion Problems in Sound Reproduction,” J. Audio Eng. Soc. 47, 583-595, 1999. 25. J. F. Claerbout, Earth Soundings Analysis: Processing versus Inversion (PVI). 1992 26. M. Miyoshi and Y. Kaneda, “Inverse filtering of room acoustics,” IEEE Trans. Acoust., Speech, Signal Process. 36(2), 145-152, 1988. 27. S. G. Norcross, G. A. Soulodre, and M. C. Lavoie, “Subjective Investigations of Inverse Filtering,” J. Audio Eng. Soc. 52, 1003-1028, 2004. 28. C.W Groetsch, “The theory of Tikhonov regularization for Fredholm equation of the first kind,” Pitman Advanced Pub.Program, Boston (1984) 29. C Dinu, C Andrei, "PEAQ – an Objective Method to Assess the Perceptual Quality of Audio Compressed Files", Proceedings of International Symposium on System Theory SINTES 12, 2005. 30. ITU-R Recommendation BS.1534-1, “Method for the Subjective Assessment of Intermediate Sound Quality (MUSHRA)”, International Telecommulications Union, Geneva, Switzerland, 2001.
|