[1] L. F. Coffin, "A study of the effects of cyclic thermal stresses on a ductile metal”, Tarnsactions-American Society of Mechanical Engineers Journal of Electronic Packaging, vol. 76, pp. 931-950, 1954.
[2] S. S. Manson, “Behavior of materials under conditions of thermal stress”, National Advisory Committee for Aeronautics-Techncal Note 2933, pp. 317-350, 1953.
[3] R. Darveaux, K. Banerji, A Mawer, and G. Dody, “Reliability of plastic ball grid array assembly”, Ball Grid Array Technology, Edited by J. Lau, McGraw-Hill, Inc. (New York, 1995).
[4] R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation”, Proc. 50th IEEE Electron. Comp. Technol. Conf. (ECTC'00), 2000.
[5] K. C. Wu, C. H. Lee, and K. N. Chiang, "Characterization of thermal cycling ramp rate and dwell time effects on AF (Acceleration Factor) Estimation," Electronic Components Technology Conference (ECTC ), Las Vegas, NV, USA, May 31- June 3, 2016
[6] . C. Wu, S. Y. Lin, T. Y. Hung and K. N. Chiang, “Reliability Assessment of Packaging Solder Joints Under Different Thermal Cycle Loading Rates”, IEEE Transactions on Device and Materials Reliability, vol. 15, no. 3, pp. 437-442, Sept. 2015.
[7] R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction”, J. Electron. Packag., vol. 124, no. 3, pp. 147-154, Jul. 2002.
[8] K. N. Chiang, H. C. Cheng, and W. H. Chen, “Large-Scaled 3-D area array electronic packaging analysis”, Journal of Computer Modeling and Simulation in Engineering, Vol. 4, No.1, pp. 4-11, 1999.
[9] C. Y. Tsou, T. N Chang, K. C. Wu, P. L. Wu and K.N. Chiang, “Reliability Assessment using Modified energy based model for WLCSP Solder Joints”, ICEP2017, Yamagata, Japan, April 19-22, 2017.
[10] W. H. Chen, H. C. Cheng and H. A. Shen, “An effective methodology for thermal characterization of electronic packaging”, IEEE Transactions on Components and Packaging Technologies, vol. 26, no. 1, pp. 222-232, March 2003.
[11] E. F. Alsina, M. Chica, K. Trawiński, A. Regattieri, “On the use of machine learning methods to predict component reliability from data-driven industrial case studies”, The International Journal of Advanced Manufacturing Technology, Vol. 94, Issue 5–8, pp. 2419–2433, 2018.
[12] S. Aich, K. Younga, K. L. Hui, A. A. Al-Absi and M. Sain, “A nonlinear decision tree based classification approach to predict the Parkinson's disease using different feature sets of voice data”, 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 638-642, Chuncheon-si Gangwon-do, Korea, 11-14 Feb., 2018.
[13] I. Takigawa, K. Shimizu, K. Tsuda, S. Takakusagi, “Machine Learning Predictions of Factors Affecting the Activity of Heterogeneous Metal Catalysts”, In: Tanaka I. (eds) Nanoinformatics. Springer, Singapore, 2018
[14] D. Wu, C. Jennings , J. Terpenny, R. X. Gao, S. Kumara, “A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests”, Journal of Manufacturing Science and Engineering, Vol.139, Issue 7, 2017.
[15] M. Pecht, R. Jaai, “A prognostics and health management roadmap for information and electronics-rich systems”, Microelectronics Reliability, Vol.50, Issue 3, pp. 317-323, 2010.
[16] T. N. Chang, C. Y. Tsou, B. H. Wang, K. N. Chiang,” Novel wafer level packaging for large die size device”, ICEP2017, Yamagata, Japan, April 19-22, 2017.
[17] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression”, The American Statistician, Vol. 46, Issue 3, 1992.
[18] J. R. Quinlan, “Induction of Decision Trees”, Machine Learning, Vol.1, Issue 1, pp. 81–106, 1986.
[19] B. Li and P. D. Franzon, “Machine learning in physical design”, 2016 IEEE 25th Conference on Electrical Performance Of Electronic Packaging And Systems (EPEPS), San Diego, CA, pp. 147-150, 2016.
[20] C. Cortes, V. Vapnik, “Support-Vector Networks”, Machine Learning, Vol. 20, Issue 3, pp. 273–297, 1995.
[21] V.Vapnik, “The Nature of Statistical Learning Theory,” Springer-Verlag, New York, 1995.
[22] R. M. Balabin, E. I. Lomakina, “upport vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry?”, The Analyst , Vol. 136, Issue 8, pp. 1703–1712, 2011.
[23] R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiech and N. Zerhouni, “Direct Remaining Useful Life Estimation Based on Support Vector Regression”, IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2276-2285, March 2017.
[24] B. E. Boser, I. M. Guyon, V. N. Vapnik, “A training algorithm for optimal margin classifiers”, COLT '92 Proceedings of the fifth annual workshop on Computational learning theory, pp. 144-152, Pittsburgh, Pennsylvania, USA — July 27 - 29, 1992.
[25] T. K. Ho, “Random Decision Forest”, Proceedings of 3rd International Conference on Document Analysis and Recognition, Montreal, Que., pp. 278-282 vol.1, Washington, DC, USA, 1995.
[26] L. S. Goldmann, “Geometry optimization of controlled collapse interconnections”, IBM Journal of Research and Development, Vol. 13, pp. 251-265, May 1969.
[27] S. M. Heinrich, M. Schaefer, S. A. Schroeder, and P. S. Lee, “Peidiction of solder joint geomertry on array-type interconnections”, American Society of Mechanical Engineers Journal of Electronic Packaging, Vol. 118, pp. 114-121, 1996.
[28] K. A. Brakke, “Surface Evolver Manual”, version 2.01 Minneapolis, MN: The Geometry Center, 1996.
[29] L. Li and B. H. Yeung, “Wafer Level and Flip Chip Design Through Solder Prediction Models and Validation”, IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, pp. 650-654, 2001.
[30] B. H. Yeung, T. T. Lee, “Evaluation and optimization of package processing and design through solder joint profile prediction”, IEEE Transactions on Advanced Packaging, Vol. 26, No. 1, pp. 68–74, 2003.
[31] K. J. Bathe, Finite Element Procedures in Engineering Analysis: Prentice Hall, 1982.
[32] S. Timoshenko, Theory of Elasticity: Mcgraw-Hill College, 1970.
[33] C. L. Dym, and I. H. Shames, Solid Mechanics: A Variational Approach, Augmented Edition: Springer, 2013.
[34] W. N. Findley, J. S. Lai, and K. Onaran, “Creep and relaxation of nonlinear viscoelastic materials”, with an introduction to linear viscoelasticity: Amsterdam ; New York : North-Holland Pub. Co. : sole distributors for the U.S.A. and Canada, Elsevier/North Holland, 1976.
[35] R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, “Concepts and Applications of Finite Element Analysis”, Wiley; 4th edition, 2001.
[36] J. Chakrabarty, “Theory of Plasticity”, Butterworth-Heinemann, 3th edition, 2006.
[37] N. E. Dowling, “Mechanical Behavior of Materials: Engineering Methods for Deformation”, Fracture, and Fatigue, Upper Saddle River, New Jersey: Prentice-Hall, Inc, 1999.
[38] J. L. Chaboche, “Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity”, International Journal of Plasticity, Vol. 5, pp. 247-302, 1989.
[39] J. L. Chaboche, “On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effect”, International Journal of Plasticity, Vol. 7, pp. 661-678, 1991.
[40] B. S. Everitt, S. Landau, M. Leese, D. Stahl, “Miscellaneous Clustering Methods”, in Cluster Analysis, 5th Edition, John Wiley & Sons, Ltd, Chichester, UK, 2011.
[41] L. F. Coffin, “A study of the effects of cyclic thermal stress on a ductile metal”, Transactions ASME, Vol. 76, pp. 931-950, 1954.
[42] E. Alpaydim, “Introduction to Machine Learning”, MIT Press, 2014.
[43] S. Raschka, “Python Machine Learning”, Packt Publishing, 2015
[44] R. Hanke, “Theorizing masculinity with/in the media,” Communication Theory, pp.183-202, 1998.
[45] F. Rosenblatt, “The Perceptron, a Perceiving and Recognizing Automaton Project Para”, Cornell Aeronautical Laboratory, 1957
[46] C. Bishop, “Pattern Recognition and Machine Learning”, Springer, New York, USA, 2006.
[47] H. Robbins, S. Monro, “A Stochastic Approximation Method”, The Annals of Mathematical Statistics, Vol. 22, No. 3, pp. 400-407, 1951
[48] I. Goodfellow, Y. Bengio , A.Courville, Deep Learning, The MIT Press, 2016
[49] M. C. Hsieh and S. L. Tzeng, "Solder joint fatigue life prediction in large size and low cost wafer-level chip scale packages," IEEE Electronic Packaging Technology (ICEPT), pp. 496–501, 2015.
[50] M. C. Hsieh, “Modeling correlation for solder joint fatigue life estimation in wafer-level chip scale packages”, International Microsystems, Packagings, Assembly and Circuits Technology Conference (IMPACT), pp. 65–68, Taipei, Taiwan, 21-23 Oct. 2015.
[51] B. Rogers and C. Scanlan, “Improving WLCSP Reliability Through Solder Joint Geometry Optimization” International Symposium on Microelectronics, vol. 2013, no. 1, pp. 546-550, Orlando, Florida, USA, 2 Oct. 2013.
[52] J. Chang, L. Wang, J. Dirk, and X. Xie, “Finite Element Modeling Predicts the Effects of Voids on Thermal Shock Reliability and Thermal Resistance of Power Device”, Welding Journal , Vol. 85, pp. 63-70, 2006.
[53] Y. J. Xu, L. Q. Wang, F. S. Wu, W. S. Xia, H. Liu, “Effect of Interface Structure on Fatigue Life under Thermal Cycle with SAC305 Solder Joint”, IEEE Electronic Packaging Technology International Conference, pp. 959-964, Dalian, China, Aug 11-14, 2013.
[54] W. S. McCulloch, W. Pitts, “A logical calculus of the ideas immanent in nervous activity”, The bulletin of mathematical biophysics, Vol.5, Issue 4, pp 115–133, 1943.
[55] M.T. Hagan, M.B. Menhaj, "Training feedforward networks with the Marquardt algorithm", IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, 1994.
[56] Hochreiter, Sepp, Schmidhuber, J¨urgen, “Long short-term memory.” Neural computation, Vol 9, Issue 8, pp.1735-1780, 1997.
[57] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, S. Khudanpur, ”Recurrent Neural Network Based Language Model”.
[58] D. H. Hubel and T. N. Wiesil “Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex” J. Physiology, Vol. 160, Issue 1 pp. 106-154, Jan 1962
[59] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner ” Gradient-based learning applied to document recognition” IEEE, Vol 86, Issue 11, Nov 1998
[60] A. Krizhevsky, I. Sutskever, G. K. Hinton “ImageNet classification with deep convolutional neural networks”, International Conference on Neural Information Processing Systems, pp. 1097-1105, Lake Tahoe, Nevada, December 03 - 06, 2012.
[61] 鄒承諺,以修正型能量密度法評估晶圓級封裝之可靠度,國立清華大學動力機械工程學系,碩士論文,2017.