|
[1] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas, “Deblurgan: Blind motion deblurring using conditional adversarial networks,” CoRR, vol. abs/1711.07064, 2017. [2] Y. Chen, Y.-K. Lai, and Y.-J. Liu, “Cartoongan: Generative adversarial networks for photo cartoonization,” 2018. [3] P. Wieschollek, M. Hirsch, B. Schölkopf, and H. Lensch, “Learning blind motion deblurring,” in Proceedings IEEE International Conference on Computer Vision (ICCV), (Piscataway, NJ, USA), pp. 231–240, IEEE, Oct. 2017. [4] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” CoRR, vol. abs/1709.01507, 2017. [5] A. He, C. Luo, X. Tian, and W. Zeng, “A twofold siamese network for real-time object tracking,” CoRR, vol. abs/1802.08817, 2018. [6] S. Nah, T. H. Kim, and K. M. Lee, “Deep multi-scale convolutional neural network for dynamic scene deblurring,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. [7] A. Chakrabarti, “A neural approach to blind motion deblurring,” in ECCV, 2016. [8] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang, “Deep video deblurring for hand-held cameras,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1279–1288, 2017. [9] T. H. Kim, K. M. Lee, B. Scholkopf, and M. Hirsch, “Online Video Deblurring via Dynamic Temporal Blending Network,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2017-October, pp. 4058–4067, 2017. [10] P. Wieschollek, B. Schölkopf, H. P. A. Lensch, and M. Hirsch, “End-to-end learning for image burst deblurring,” in Computer Vision - ACCV 2016 - 13th Asian Conference on Computer Vision, vol. 10114 of Image Processing, Computer Vision, Pattern Recognition, and Graphics, pp. 35–51, Springer, 2017. [11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, pp. 1735–1780, 1997. [12] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and evaluating blind deconvolution algorithms,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971, 2009. [13] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-laplacian priors,” in NIPS, 2009. [14] T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol. 7 3, pp. 370–5, 1998. [15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial networks,” CoRR, vol. abs/1406.2661, 2014. [16] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. A. Cunningham, A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114, 2017. [17] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” CoRR, vol. abs/1710.10196, 2017. [18] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “Highresolution image synthesis and semantic manipulation with conditional gans,” CoRR, vol. abs/1711.11585, 2017. [19] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976, 2017. [20] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251, 2017. [21] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in ICML, 2017. [22] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of wasserstein gans,” in NIPS, 2017. [23] X. Xu, D. Sun, J. Pan, Y. Zhang, H. Pfister, and M.-H. Yang, “Learning to superresolve blurry face and text images,” 2017 IEEE International Conference on Computer Vision (ICCV), pp. 251–260, 2017. [24] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in MICCAI, 2015. [25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016. [26] A. L. Maas, “Rectifier nonlinearities improve neural network acoustic models,” 2013. [27] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance normalization: The missing ingredient for fast stylization,” CoRR, vol. abs/1607.08022, 2016. [28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in ICML, 2015. [29] X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang, “Improving the improved training of wasserstein gans: A consistency term and its dual effect,” CoRR, vol. abs/1803.01541, 2018. [30] M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial networks,” CoRR, vol. abs/1701.04862, 2017. [31] Y. Wu et al., “Tensorpack.” https://github.com/tensorpack/, 2016. [32] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” CoRR, vol. abs/1603.04467, 2015. [33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2014. [34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large- Scale Hierarchical Image Database,” in CVPR09, 2009. [36] X. Tao, H. Gao, Y. Wang, X. Shen, J. Wang, and J. Jia, “Scale-recurrent network for deep image deblurring,” CoRR, vol. abs/1802.01770, 2018.
|