跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 12:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林其翰
研究生(外文):Lin, Chi-Han
論文名稱:人體區域網路應用服務於5G網路之完整通訊協定設計
論文名稱(外文):A Comprehensive Protocol Design for Service Provision of Body Area Network Applications in 5G Networks
指導教授:陳文村陳文村引用關係林靖茹許健平許健平引用關係
指導教授(外文):Chen, Wen-TsuenLin, Kate Ching-JuSheu, Jang-Ping
口試委員:曾煜棋逄愛君王志宇林志哲
口試委員(外文):Tseng, Yu-CheePang, Ai-ChunWang, Chih-YuLin, Chih-Che
口試日期:2018-11-13
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:111
中文關鍵詞:人體區域網路媒介存取控制協定用電效率
外文關鍵詞:Body area networksMAC protocolenergy efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:2
人體感測網路(Body Area Network,BAN)的相關應用服務在近幾年已經越來越普遍,裝置在人體上的穿戴式裝置(Wearable device)能夠監控人體的生理數據,且通常需要對應的應用服務來儲存和分析資料,在這個情境下,智慧型手機在管理這些穿戴式裝置以及橋接裝置和應用服務方面扮演著重要角色。在本博士論文中,將從穿戴式裝置至應用服務的通訊過程中切成兩個階段,並且個別設計對應的通訊方法來加強傳輸效率。第一階段是指智慧型手機收集來自穿戴式裝置的資料,由於一個使用者會穿戴多個由電池供電的穿戴式裝置(簡稱為感測器),連接著多個感測器的智慧型手機(或稱為集線器),應該要能夠將感測器的傳輸做良好排程以節省電力,使得感測器的使用時間可以盡量延長。換言之,應該要設計一套媒介存取控制(Medium Access Control,MAC)通訊協定給人體感測網路內的感測器和集線器所使用(稱為intra-BAN MAC protocol),以避免感測器間的訊號碰撞。此外,當人與人互相接近時,人體區域網路的訊號就很有可能干擾到鄰近其他的人體區域網路的傳輸。因此,也應該要設計一個考慮人體區域網路間干擾問題的媒介存取控制協定(稱為inter-BAN MAC protocol),用來錯開多個人體區域網路的傳輸。而在集線器收到感測器的資料後,必須要上傳感測資料給基地台(Base station,BS)以進行後續的資料分析。但是,某些人體區域網路應用可能會偵測到高度緊急事件如跌倒、急性心臟病或是癲癇,因而需要應付突發的緊急傳輸。這類型的緊急上傳任務理所當然需要盡快地上傳至基地台上,也因此,第二個階段就著眼在提供一套上傳加速通訊協定以應付這些緊急任務。

在Intra-BAN媒介存取控制協定方面,考慮一個集線器與數個感測器所組成的單一人體區域網路,由於資料封包的傳輸成功率易受到由於人體遮蔽以及使用者動作改變導致的通訊頻道品質波動的影響,為了適應這種通訊頻道的動態改變,我們設計一套媒介存取控制協定,稱作以輪巡為基礎的頻道感知協定(Channel-aware Polling-based MAC Protocol,CPMAC)。CPMAC會嘗試著在耗電量以及整體傳輸成功率之間取得一個平衡,因此,本論文將一個感測器的期望耗電量寫成算式,並將該問題映射到D[x]/D/1隊列模型以求出整體的傳輸成功率,模擬結果與傳統的分時多工(TDMA)和IEEE 802.15.6標準的CSMA/CA方法做比較,CPMAC大幅改進能量效率並同時保有低延遲。

在Inter-BAN媒介存取控制協定設計方面,考慮到多個人體區域網路固有的分散式性質以及相互的訊號干擾,提出了基於CSMA/CA方式的通訊協定,稱作負載自適應協定(Load-Adaptive MAC Protocol,LAMP)。LAMP可以根據鄰居的負載資訊與理論分析,自動地調整系統參數(就是指競爭窗口大小)。與其他相關的研究不同,LAMP包含自動切換頻道的機制,使整個人體區域網路在偵測到頻道壅塞時能夠切換至其他的頻道。此外,為了減少頻道的存取延遲,本論文額外設計了以布隆過濾器為基礎(Bloom filter-based)的鄰居訊息分享機制,使集線器能夠快速判斷出目前所處的頻道是否壅塞。模擬結果與傳統CSMA/CA機制相比,顯示LAMP提升了42.8%的產能,節省了一半能耗。此外,所提出的布隆過濾器的分享機制,幫助LAMP更進一步減少偵測到壅塞狀況達原有時間的十分之一。


上傳加速通訊協定設計方面是以5G-IoT網路為環境,其概念是利用5G網路中閒置的物聯網(Internet of Things,IoT)設備來達到加速上傳速率的目的。智慧型手機會先將收到的生理資料分割成數個片段,然後經由 D2D(Device-to-Device)的通訊方式將這些片段分別送給不同的物聯網裝置。隨後,基地台利用正交分頻多工(OFDM)的技術優勢,同時接收來自不同物聯網裝置和智慧型手機的片段。關於最佳資料分割以及最佳傳輸順序的問題也會在這部分探討,也由於解出本問題最佳解的難度極高,本論文也提出了二分之一近似演算法,模擬的結果與傳統方法相比,顯示所提出的方法能夠減少這些緊急任務的延遲時間高達76%。

透過這三個通訊協定設計,人體區域網路應用程式能夠更有效率地服務使用者,本論文最後提供了幾個與通訊協定設計領域相關的未來研究方向來作總結。
The application services of Body Area Networks (BANs) have become more and more popular in recent years. Wearable devices equipped on a human body monitor several physiological data, which are then sent, recorded, and analyzed in remote application services. In this scenario, a smartphone plays an important role to manage these devices and bridge the devices and services. Thus, in this dissertation, the communication from devices to services is divided into two stages, and corresponding methods are respectively designed to enhance the transmission efficiency. The first stage is that the smartphone collects the data from wearable devices. Since a person may equip multiple battery-powered wearable devices (abbreviated as sensors), a smartphone or a hub connecting with these sensors should well schedule the transmissions of sensors to save energy such that the life time of sensors could be lengthened. In other words, an intra-BAN MAC protocol should be designed to avoid signal collisions among sensors. Furthermore, when people meet each other, the signal of a BAN may interfere with those of nearby BANs. Thus, another MAC protocol, namely inter-BAN MAC protocol, should be designed to coordinate BANs to interleave their transmissions. After a hub collects data from sensors, it uploads them to associating Base Station (BS) to perform subsequent data analysis. However, BAN applications may require immediate uploads while detecting high emergency events such as fall, acute heart disease, and epilepsy. These critical tasks should be uploaded as soon as possible, and, hence, the second stage aims to provide an uploading boost protocol for critical tasks.

The intra-BAN MAC protocol design aims to alleviate the channel fluctuation that downgrades the transmission rate. To adapt to channel dynamics, a Medium Access Control (MAC) protocol for intra-BAN, called Channel-aware Polling-based MAC protocol (CPMAC), is designed. CPMAC tries to balance the tradeoff between the energy consumption and the probability of completing all transmissions. Simulation results show that, as compared to TDMA-based scheduling and the IEEE 802.15.6 CSMA/CA protocols, CPMAC significantly improves energy efficiency and keeps the latency short. The inter-BAN MAC protocol design takes into account the signal interference from neighboring BANs. Considering the fully distributed nature of BANs, a CSMA/CA-based protocol, called Load-Adaptive MAC Protocol (LAMP), is proposed to automatically configure the system parameter (i.e., contention window size) according to neighbor information and theoretical analysis. LAMP includes an automatic channel switching mechanism to change the operating channel while detecting congestion and a mechanism to rescue sensors that fail to receive the channel switching messages. Additionally, to further reduce the latency of channel access, a Bloom filter-based neighbor information sharing mechanism is designed to rapidly determine whether the current channel is congested. Simulation results show that LAMP outperforms traditional CSMA/CA protocols in terms of throughput and energy consumption up to 42.8% and 50%, respectively.

The upload boost protocol is designed under 5G-IoT networks. The idea is to use idle IoT devices of Internet of Things (IoT) in 5G networks to boost the uploading rate. The smartphone divides the data into several segments and sends segments to different IoT devices via the Device-to-Device (D2D) communication of 5G networks. Then, the BS takes advantage of Orthogonal Frequency-Division Multiplexing (OFDM) to simultaneously receive segments from IoT devices and the smartphone. In this dissertation, the problem about the optimal data partitioning and transmission order is formulated. Due to the hardness of the problem, a 1/2-approximation algorithm is proposed. The simulation results shows that the proposed approach can reduce the latency of critical tasks up to 76% comparing with traditional approaches.

These three protocols make the service provision of BAN applications become more efficient. This dissertation is concluded by providing some future research issues related to the above protocols.
1 Introduction.......................................................1
2 Related Works of Protocol Design...................................5
2.1 IEEE 802.15.6 Standard...........................................5
2.2 Characteristics of Intra-BAN MAC Design..........................6
2.3 Previous Work about Intra-BAN MAC Design.........................8
2.4 Characteristics of Inter-BAN MAC Protocols.......................9
2.5 Previous Work about Inter-BAN MAC Design........................11
2.6 Upload-boosting Mechanism.......................................13
3 Inter-BAN Communication Design....................................15
3.1 System Model....................................................16
3.2 Problem Formulation.............................................18
3.2.1 Problem Definition............................................18
3.2.2 Energy Efficiency.............................................19
3.2.3 Waiting Time Estimation.......................................20
3.3 Protocol Design.................................................24
3.3.1 Detailed Procedures...........................................25
3.4 Toward Rapid Channel Load Estimation............................29
3.4.1 The Estimation of pi with Incomplete Ti.......................30
3.4.2 The Estimation of E[Nij]......................................31
3.4.3 Neighbor Information Maintenance..............................33
3.5 Performance Evaluation..........................................34
3.5.1 Complete Graph................................................36
3.5.2 Incomplete Graph..............................................37
3.5.3 Detection Time of an Overloaded Channel.......................38
3.5.4 Channel Switching Comparison..................................39
3.6 Summary.........................................................40
4 Intra-BAN Communication Design....................................42
4.1 Channel-Aware Polling-based Medium Access.......................44
4.1.1 Protocol Overview and Definitions.............................45
4.1.2 Scenario and Assumptions......................................46
4.1.3 Protocol Design...............................................46
4.2 Performance Analysis and System Adaptation......................51
4.2.1 Energy Consumption Analysis...................................54
4.2.2 Completion Probability of Data Transmissions..................58
4.2.3 Choosing Proper Number of Polling Periods.....................60
4.3 Performance Evaluation..........................................61
4.3.1 Accuracy of the Analytical Models.............................62
4.3.2 Effectiveness of Polling Period Adaptation....................65
4.3.3 Performance Comparison........................................66
4.3.4 The Impact of Parameter alpha.................................70
4.4 Summary.........................................................70
5 High Speed Communication Design for Uploading in 5G Networks......72
5.1 System Model....................................................75
5.1.1 Semi-sequential Relay Approach................................76
5.1.2 Problem Formulation...........................................76
5.2 Optimal Relay Order and Data Partition..........................78
5.3 Multiple Relay Selection........................................87
5.3.1 Greedy Algorithm..............................................87
5.4 Multiple Sources Transmission...................................88
5.5 Simulation Results..............................................91
5.5.1 Number of Relay Nodes.........................................93
5.5.2 Distance between Source and BS................................94
5.5.3 Distance between Relays and Source............................95
5.5.4 Density of Relay Candidates...................................95
5.5.5 Relay Selection...............................................95
5.5.6 Multiple Sources..............................................96
5.6 Summary.........................................................97
5.7 Proof of Theorem 6..............................................97
6 Conclusions......................................................102
[1] SNS Telecom & IT, “The wearable technology ecosystem: 2018 - 2030 - opportunities, challenges, strategies, industry verticals and forecasts,” Research and Markets, Apr. 2018.
[2] “ISO/IEC/IEEE international standard - information technology – telecommunications and information exchange between systems – local and metropolitan area networks – specific requirements – part 15-6:Wireless body area network,” ISO/IEC/IEEE 8802-15-6:2017(E), pp. 1–274, Mar. 2018.
[3] K. Prabh, F. Royo, S. Tennina, and T. Olivares, “BANMAC: An opportunistic MAC protocol for reliable communications in body area networks,” in Proceedings of IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), 2012.
[4] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless sensor networks,” in Proceedings of IEEE International Conference on Computer Communications (INFOCOM), 2002.
[5] S. Galzarano, A. Liotta, and G. Fortino, “QL-MAC: A Q-learning based MAC for wireless sensor networks,” in Proceedings of International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP), Springer International Publishing, 2013, pp. 267–275.
[6] O. Omeni, A. C.W.Wong, A. J. Burdett, and C. Toumazou, “Energy efficient medium access protocol for wireless medical body area sensor networks,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 4, pp. 251–259, Dec. 2008.
[7] S. Marinkovic, E. Popovici, C. Spagnol, S. Faul, and W. Marnane, “Energy-efficient low duty cycle MAC protocol for wireless body area networks,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 6, pp. 915–925, 2009.
[8] M. Ameen, J. Liu, S. Ullah, and K.-S. Kwak, “A power efficient MAC protocol for implant device communication in wireless body area networks,” in Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), 2011.
[9] B. Liu, Z. Yan, and C. W. Chen, “Medium access control for wireless body area networks with QoS provisioning and energy efficient design,” IEEE Transactions on Mobile Computing, vol. 16, no. 2, pp. 422–434, Feb. 2017.
[10] G. Smart, N. Deligiannis, R. Surace, V. Loscri, G. Fortino, and Y. Andreopoulos, “Decentralized time-synchronized channel swapping for ad hoc wireless networks,” IEEE Transactions on Vehicular Technology, vol. 65, no. 10, pp. 8538–8553, 2016.
[11] M. Shu, D. Yuan, C. Zhang, Y. Wang, and C. Chen, “A MAC protocol for medical monitoring applications of wireless body area networks,” Sensors, vol. 15, no. 6, p. 12 906, 2015. [Online]. Available: http://www.mdpi.com/1424-8220/15/6/12906.
[12] B. Liu, Z. Yan, and C. W. Chen, “MAC protocol in wireless body area networks for E-health: Challenges and a context-aware design,” IEEE Wireless Communications, vol. 20, no. 4, pp. 64–72, 2013.
[13] G. T. Chen,W. T. Chen, and S. H. Shen, “2L-MAC: A MAC protocol with two-layer interference mitigation in wireless body area networks for medical applications,” in Proceedings of IEEE International Conference on Communications (ICC), 2014.
[14] A. Schulman et al., “Bartendr: A practical approach to energy-aware cellular data scheduling,” in Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom), 2010.
[15] Z. O. et al., “Utilize signal traces from others? A crowdsourcing perspective of energy saving in cellular data communication,” IEEE Transactions on Mobile Computing, vol. 14, no. 1, pp. 194–207, 2015.
[16] R. T. Morris, J. C. Bicket, and J. C. Bicket, “Bit-rate selection in wireless networks,” Master’s thesis, MIT, Tech. Rep., 2005.
[17] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation for 802.11 wireless networks,” in Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom), 2006.
[18] D. Halperin,W. Hu, A. Sheth, and D.Wetherall, “Predictable 802.11 packet delivery from wireless channel measurements,” in Proceedings of ACM International Conference of the Special Interest Group on Data Communication (SIGCOMM), 2010.
[19] H. Rahul, F. Edalat, D. Katabi, and C. Sodini, “Frequency-aware rate adaptation and MAC protocols,” in Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom), 2009.
[20] K. C.-J. Lin, N. Kushman, and D. Katabi, “Ziptx: Harnessing partial packets in 802.11 networks,” in Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom), 2008.
[21] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-layer wireless bit rate adaptation,” in Proceedings of ACM International Conference of the Special Interest Group on Data Communication (SIGCOMM), 2009.
[22] S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour, “Wireless body area networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1658–1686, 2014.
[23] S. Movassaghi, M. Abolhasan, and D. Smith, “Smart spectrum allocation for interference mitigation in wireless body area networks,” in Proceedings of IEEE International Conference on Communications (ICC), 2014.
[24] S. Movassaghi, M. Abolhasan, D. Smith, and A. Jamalipour, “Aim: Adaptive internetwork interference mitigation amongst co-existing wireless body area networks,” in Proceedings of IEEE Global Communications Conference (GLOBECOM), 2014.
[25] S. Movassaghi, M. Abolhasan, and D. Smith, “Cooperative scheduling with graph coloring for interference mitigation in wireless body area networks,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), 2014.
[26] S. Movassaghi et al., “Exploiting unknown dynamics in communications amongst coexisting wireless body area networks,” in Proceedings of IEEE Global Communications Conference (GLOBECOM), 2015.
[27] S. Movassaghi, A. Majidi, A. Jamalipour, D. Smith, and M. Abolhasan, “Enabling interference-aware and energy-efficient coexistence of multiple wireless body area networks with unknown dynamics,” IEEE Access, vol. 4, pp. 2935–2951, 2016.
[28] M. N. Anjum and H.Wang, “Optimal resource allocation for deeply overlapped selfcoexisting WBANs,” in Proceedings of IEEE Global Communications Conference (GLOBECOM), 2016.
[29] M. Li, J. Liu, Z. Ma, C. Yuan, and B. Yuan, “Throughput optimization with fairness consideration for coexisting WBANs,” in Proceedings of IEEE International Conference on Communications (ICC), IEEE, 2015.
[30] S. H. Cheng and C. Y. Huang, “Coloring-based inter-WBAN scheduling for mobile wireless body area networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 2, pp. 250–259, 2013.
[31] L. Zou, B. Liu, C. Chen, and C. W. Chen, “Bayesian game based power control scheme for inter-WBAN interference mitigation,” in Proceedings of IEEE Global Communications Conference (GLOBECOM), 2014.
[32] X. Zhao, B. Liu, C. Chen, and C. W. Chen, “QoS-driven power control for inter-WBAN interference mitigation,” in Proceedings of IEEE Global Communications Conference (GLOBECOM), 2015.
[33] Y. Yang and D. B. Smith, “Wireless body area networks: Energy-efficient, provably socially-efficient, transmit power control,” in Proceedings of IEEE International Conference on Communications (ICC), 2017.
[34] J. Shao, “A CSMA/CA based MAC layer solution for inter-WBAN interference and starvation,” Master’s thesis, University of Waterloo, Canada, 2015. [Online]. Available: http://hdl.handle.net/10012/9555.
[35] B. Yuan, J. Liu, W. Liu, and S. Zheng, “DIM: A novel decentralized interference mitigation scheme in WBAN,” in Proceedings of IEEE International Conference on Wireless Communications Signal Processing (WCSP), 2015, pp. 1–5.
[36] S. Kim, S. Kim, J.-W. Kim, and D.-S. Eom, “Flexible beacon scheduling scheme for interference mitigation in body sensor networks,” in Proceedings of IEEE International Conference on Sensing, Communication and Networking (SECON), 2012.
[37] W. Huang and T. Q. S. Quek, “Adaptive CSMA/CA MAC protocol to reduce inter-WBAN interference for wireless body area networks,” in Proceedings of IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2015.
[38] W. Sun, Y. Ge, and W.-C. Wong, “A lightweight distributed scheme for mitigating inter-user interference in body sensor networks,” Computer Networks, vol. 57, no. 18, pp. 3885–3896, 2013.
[39] P. R. Grassi, V. Rana, I. Beretta, and D. Sciuto, “B2IRS: A technique to reduce BAN-BAN interferences in wireless sensor networks,” in Proceedings of IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN), 2012.
[40] C. Li, B. Zhang, X. Yuan, S. Ullah, and A. V. Vasilakos, “MC-MAC: A multi-channel based MAC scheme for interference mitigation in wbans,” Wireless Networks, pp. 1–15, 2016.
[41] S. Liang, Y. Ge, S. Jiang, and H. P. Tan, “A lightweight and robust interference mitigation scheme for wireless body sensor networks in realistic environments,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), 2014.
[42] B. Cao, Y. Ge, C. W. Kim, G. Feng, H. P. Tan, and Y. Li, “An experimental study for inter-user interference mitigation in wireless body sensor networks,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3585–3595, 2013.
[43] S. Andreev, A. Pyattaev, K. Johnsson, O. Galinina, and Y. Koucheryavy, “Cellular traffic offloading onto network-assisted device-to-device connections,” IEEE Communications Magazine, vol. 52, no. 4, pp. 20–31, Apr. 2014.
[44] D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng, and S. Li, “Device-to-device communications underlaying cellular networks,” IEEE Transactions on Communications, vol. 61, no. 8, pp. 3541–3551, Aug. 2013.
[45] Z. S. Syu and C. H. Lee, “Spatial constraints of device-to-device communications,” in Proceedings of IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), 2013, pp. 94–98.
[46] X. Lin, J. G. Andrews, and A. Ghosh, “Spectrum sharing for device-to-device communication in cellular networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 12, pp. 6727–6740, Dec. 2014.
[47] T. Bansal, K. Sundaresan, S. Rangarajan, and P. Sinha, “R2D2: Embracing device-to-device communication in next generation cellular networks,” in Proceedings of IEEE International Conference on Computer Communications (INFOCOM), 2014, pp. 1563–1571.
[48] Z. Shen, A. Papasakellariou, J. Montojo, D. Gerstenberger, and F. Xu, “Overview of 3GPP LTE-Advanced carrier aggregation for 4G wireless communications,” IEEE Communications Magazine, vol. 50, no. 2, pp. 122–130, Feb. 2012.
[49] S. Wang and J. S. Thompson, “Signal processing implementation of virtual carrier for supporting M2M systems based on LTE,” in Proceedings of IEEE Vehicular Technology Conference (VTC-Spring), May 2015, pp. 1–5.
[50] D. Korpi, J. Tamminen, M. Turunen, T. Huusari, Y. S. Choi, L. Anttila, S. Talwar, and M. Valkama, “Full-duplex mobile device: Pushing the limits,” IEEE Communications Magazine, vol. 54, no. 9, pp. 80–87, Sep. 2016.
[51] Y.-W. P. Hong, W.-J. Huang, and C.-C. J. Kuo, Cooperative communications and networking: Technologies and system design. Springer Science & Business Media, 2010.
[52] B. Talha and M. Pätzold, “Channel models for mobile-to-mobile cooperative communication systems: A state of the art review,” IEEE Vehicular Technology Magazine, vol. 6, no. 2, pp. 33–43, Jun. 2011.
[53] Z. Yi and I. M. Kim, “Diversity order analysis of the decode-and-forward cooperative networks with relay selection,” IEEE Transactions onWireless Communications, vol. 7, no. 5, pp. 1792–1799, May 2008.
[54] S. Narayanan, M. D. Renzo, F. Graziosi, and H. Haas, “Distributed spatial modulation: A cooperative diversity protocol for half-duplex relay-aided wireless networks,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2947–2964, May 2016.
[55] R. Mesleh, S. S. Ikki, E.-H. M. Aggoune, and A. Mansour, “Performance analysis of space shift keying (SSK) modulation with multiple cooperative relays,” EURASIP Journal on Advances in Signal Processing, vol. 2012, no. 1, p. 201, 2012.
[56] F. Xia and A. Rahim, MAC Protocols for Cyber-Physical Systems. Springer Publishing Company, Incorporated, 2015.
[57] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[58] F. Daneshgaran, M. Laddomada, F. Mesiti, and M. Mondin, “Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects,” IEEE Transactions on Wireless Communications, vol. 7, no. 4, pp. 1276–1286, 2008.
[59] D. Malone, K. Duffy, and D. Leith, “Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions,” IEEE/ACM Transactions on Networking, vol. 15, no. 1, pp. 159–172, 2007.
[60] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535–547, 2000.
[61] S. J. Swamidass and P. Baldi, “Mathematical correction for fingerprint similarity measures to improve chemical retrieval,” Journal of chemical information and modeling, 2007.
[62] TI CC2640 SimpleLinkTM Bluetooth R wireless MCU datasheet (Rev. B), 2016. [Online]. Available: https://goo.gl/FzyVCA.
[63] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Eastern Research Laboratory, Digital Equipment Corporation Hudson, MA, 1984.
[64] M. Shu, D. Yuan, C. Zhang, Y. Wang, and C. Chen, “A MAC protocol for medical monitoring applications of wireless body area networks,” Sensors, vol. 15, no. 6, pp. 12 906–12 931, 2015.
[65] D. B. Smith and L.W. Hanlen, “Channel modeling for wireless body area networks,” in Ultra-Low-Power Short-Range Radios. Springer International Publishing, 2015, pp. 25–55. [Online]. Available: https://doi.org/10.1007/978-3-319-14714-7_2.
[66] S. L. Cotton andW. G. Scanlon, “An experimental investigation into the influence of user state and environment on fading characteristics in wireless body area networks at 2.45 GHz,” IEEE Transactions on Wireless Communications, vol. 8, no. 1, pp. 6–12, 2009.
[67] Q. Wang, M. Hempstead, and W. Yang, “A realistic power consumption model for wireless sensor network devices,” in Proceedings of IEEE International Conference on Sensing, Communication and Networking (SECON), 2006.
[68] J. Vazifehdan, R. V. Prasad, M. Jacobsson, and I. Niemegeers, “An analytical energy consumption model for packet transfer over wireless links,” IEEE Communications Letters, vol. 16, no. 1, pp. 30–33, 2012.
[69] C. Bisdikian, J. Lew, and A. Tantawi, “The generalized D[X]/D/1 queue: A flexible computer communications model,” Telecommunication Systems, vol. 6, no. 1, pp. 127–146, 1996, ISSN: 1018-4864. [Online]. Available: http://dx.doi.org/10.1007/BF02114290.
[70] “CC2540 2.4 GHz Bluetooth low energy system-on-chip,” Product specification, Texas Instruments, p. 38, 2011.
[71] L. Liu, R. D’Erico, L. Ouvery, L. Ouvry, and C. Oestges, “Dynamic channel modeling at 2.4 GHz for on-body area networks,” Advances in Electronics and Telecommunications, vol. 2, no. 4, 2011.
[72] R. Fu, Y. Ye, N. Yang, and K. Pahlavan, “Doppler spread analysis of human motions for body area network applications,” in Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2011.
[73] R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on LPWA technology: Lora and nb-iot,” ICT Express, vol. 3, no. 1, pp. 14–21, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2405959517300061.
[74] S. Jung and J. Kim, “A new way of extending network coverage: Relay-assisted D2D communications in 3GPP,” ICT Express, vol. 2, no. 3, pp. 117–121, 2016, Special Issue on ICT Convergence in the Internet of Things (IoT). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S240595951630073X.
[75] L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Enable device-to-device communications underlaying cellular networks: Challenges and research aspects,” IEEE Communications Magazine, vol. 52, no. 6, pp. 90–96, Jun. 2014.
[76] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd. The MIT Press, 2009, ISBN: 9780262033848.
[77] P. M. Pardalos and G. Schnitger, “Checking local optimality in constrained quadratic programming is NP-hard,” Operations Research Letters, vol. 7, pp. 33–35, Nov. 1978.
[78] K. G. Murty and S. N. Kabadi, “Some NP-Complete problems in quadratic and nonlinear programming,” Mathematical programming, vol. 39, no. 1, pp. 117–129, Mar. 1987.
[79] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions—I,” Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.
[80] M. L. Fisher, G. L. Nemhauser, and L. A.Wolsey, An analysis of approximations for maximizing submodular set functions—II, M. L. Balinski and A. J. Hoffman, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1978, pp. 73–87.
[81] H. S. Liao, P. Y. Chen, and W. T. Chen, “An efficient downlink radio resource allocation with carrier aggregation in LTE-Advanced networks,” IEEE Transactions on Mobile Computing, vol. 13, no. 10, pp. 2229–2239, Oct. 2014.
[82] M. Condoluci, L. Militano, A. Orsino, J. Alonso-Zarate, and G. Araniti, “LTE-direct vs.WiFi-direct for machine-type communications over LTE-A systems,” in Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2015, pp. 2298–2302.
[83] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 12). Dec. 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top