|
References [Buad2005] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, 60–65, 2005. [Dabo2007] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080–2095, 2007. [Glor2010] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, 249–256, 2010. [Good2014] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. Advances in Neural Information Processing Systems 27 (NIPS), 2672–2680, 2014. [He2016] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778, 2016. [Ioff2015] S. Ioffe and C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning (ICML), volume 37 of Proceedings of Machine Learning Research, 448–456, 2015. [LeCu1989] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551, 1989. [Lin2014] M. Lin, Q. Chen, and S. Yan. Network in network. Proceedings of the International Conference on Learning Representations (ICLR), 2014. [Maas2013] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. ICML Workshop on Deep Learning for Audio, Speech, and Language Processing (WDLASL), volume 30, page 3, 2013. [Rama2018] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions, 2018. URL: https://openreview.net/forum?id=SkBYYyZRZ. [Tian2018] C. Tian, Y. Xu, L. Fei, and K. Yan. Deep learning for image denoising: A survey. CoRR, abs/1810.05052, 2018. URL: http://arxiv.org/abs/ 1810.05052. [Ulya2018] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 9446–9454, 2018. [Ulya2016] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance normalization: the missing ingredient for fast stylization. CoRR, abs/1607.08022, 2016. URL: http://arxiv.org/abs/1607.08022. [Wang2003] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image quality assessment, volume 2, 1398–1402, 2003. [Wang2004] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004. [Wu2018] Y.Wu and K. He. Group normalization. European Conference on Computer Vision (ECCV), 3–19, 2018. [Zhan2017] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7):3142–3155, 2017. [Zhan2018] K. Zhang,W. Zuo, and L. Zhang. FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Transactions on Image Processing, 27(9):4608–4622, 2018. [Abad2015] M. Abadi et al. TensorFlow: large-scale machine learning on heterogeneous systems, 2015. URL: https://www.tensorflow.org/. Software available from tensorflow.org. [Web01] M. Colom. NLM image denoising demo. http://demo.ipol.im/ demo/bcm_non_local_means_denoising. last accessed: 2018-12- 31. [Web02] M. Lebrun. BM3D image denoising code. https://github.com/ gfacciol/bm3d. last accessed: 2018-12-31.
|