|
1. Chang, Y.-C., et al. Semantic frame-based statistical approach for topic detection. in Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing. 2014. 2. Chang, Y.-C., et al., A semantic frame-based intelligent agent for topic detection. 2017. 21(2): p. 391-401. 3. Bharti, S.K. and K.S.J.a.p.a. Babu, Automatic keyword extraction for text summarization: A survey. 2017. 4. Salton, G., C.J.I.p. Buckley, and management, Term-weighting approaches in automatic text retrieval. 1988. 24(5): p. 513-523. 5. Blei, D.M., A.Y. Ng, and M.I.J.J.o.m.L.r. Jordan, Latent dirichlet allocation. 2003. 3(Jan): p. 993-1022. 6. Matsuo, Y. and M.J.I.J.o.A.I.T. Ishizuka, Keyword extraction from a single document using word co-occurrence statistical information. 2004. 13(01): p. 157-169. 7. Paquot, M., Y.J.L. Bestgen, and c.s.i.p. linguistics, Distinctive words in academic writing: A comparison of three statistical tests for keyword extraction. 2009. 68: p. 247. 8. Seretan, V., Syntax-based collocation extraction. Vol. 44. 2011: Springer Science & Business Media. 9. Dunning, T.J.C.l., Accurate methods for the statistics of surprise and coincidence. 1993. 19(1): p. 61-74. 10. Mihalcea, R. and P. Tarau. Textrank: Bringing order into text. in Proceedings of the 2004 conference on empirical methods in natural language processing. 2004. 11. Conroy, J.M. and D.P. O'leary. Text summarization via hidden markov models. in Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. 2001. ACM. 12. Guyon, I., et al., Gene selection for cancer classification using support vector machines. 2002. 46(1-3): p. 389-422. 13. Hirao, T., et al. Ntt’s text summarization system for duc-2002. in Proceedings of the Document Understanding Conference 2002. 2002. Citeseer. 14. Le Nguyen, M., et al. Sentence extraction with support vector machine ensemble. in First World Congress of the International Federation for Systems Research (IFSR’05), Symposium on Data/Text Mining from Large Databases. Kobe. 2005. 15. Zhang, K., et al. Keyword extraction using support vector machine. in International Conference on Web-Age Information Management. 2006. Springer. 16. Frank, E., et al. Domain-specific keyphrase extraction. in 16th International joint conference on artificial intelligence (IJCAI 99). 1999. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. 17. Gruber, T.R.J.K.a., A translation approach to portable ontology specifications. 1993. 5(2): p. 199-220. 18. 成功大學資訊工程學系學位論文, 鍾.J., 基於 Ontology 架構之文件分類網路服務研究與建構. 2004: p. 1-65. 19. Agarwal, A., et al. Sentiment analysis of twitter data. in Proceedings of the workshop on languages in social media. 2011. Association for Computational Linguistics. 20. 張博勇, 運用中文剖析與詞彙庫於本體論自動建構之研究, in 電機工程所. 2009, 國立中正大學: 嘉義縣. p. 110. 21. 宋啟聖, 詞網同義詞集的中文語意表達之研究, in 資訊科學系. 2003, 東吳大學: 台北市. p. 46. 22. 陳信裕, 利用廣義知網及維基百科於劇本文件之廣告推薦, in 資訊工程學系. 2016, 國立臺灣師範大學: 台北市. p. 57. 23. Li, C.-R., C.-H. Yu, and H.-H. Chen. Predicting the semantic orientation of terms in E-HowNet. in Proceedings of the 23rd conference on computational linguistics and speech processing. 2011. Association for Computational Linguistics. 24. Agrawal, R. and R. Srikant. Fast algorithms for mining association rules. in Proc. 20th int. conf. very large data bases, VLDB. 1994. 25. Han, J. and J.J.A.S.e.n. Pei, Mining frequent patterns by pattern-growth: methodology and implications. 2000. 2(2): p. 14-20. 26. Inokuchi, A., T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. in European Conference on Principles of Data Mining and Knowledge Discovery. 2000. Springer. 27. Washio, T. and H.J.A.S.E.N. Motoda, State of the art of graph-based data mining. 2003. 5(1): p. 59-68. 28. Yun, U. and J.J. Leggett. WFIM: weighted frequent itemset mining with a weight range and a minimum weight. in Proceedings of the 2005 SIAM international conference on data mining. 2005. SIAM. 29. Tao, F., F. Murtagh, and M. Farid. Weighted association rule mining using weighted support and significance framework. in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003. ACM. 30. Wang, K., Y. He, and J. Han. Mining frequent itemsets using support constraints. in VLDB. 2000. 31. Chang, Y.-C., et al. Semantic frame-based natural language understanding for intelligent topic detection agent. in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems. 2014. Springer. 32. Lovász, L.J.C., Paul erdos is eighty, Random walks on graphs: A survey. 1993. 2(1): p. 1-46. 33. Turian, J., L. Ratinov, and Y. Bengio. Word representations: a simple and general method for semi-supervised learning. in Proceedings of the 48th annual meeting of the association for computational linguistics. 2010. Association for Computational Linguistics. 34. Hinton, G.E. Learning distributed representations of concepts. in Proceedings of the eighth annual conference of the cognitive science society. 1986. Amherst, MA. 35. Mikolov, T., et al., Efficient estimation of word representations in vector space. 2013. 36. Mnih, A. and K. Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive estimation. in Advances in neural information processing systems. 2013. 37. Chen, S., et al. 使用詞向量表示與概念資訊於中文大詞彙連續語音辨識之語言模型調適 (Exploring Word Embedding and Concept Information for Language Model Adaptation in Mandarin Large Vocabulary Continuous Speech Recognition)[In Chinese]. in Proceedings of the 27th Conference on Computational Linguistics and Speech Processing (ROCLING 2015). 2015. 38. Qiu, L., et al. Learning Word Representation Considering Proximity and Ambiguity. in AAAI. 2014. 39. Maas, A.L., et al. Learning word vectors for sentiment analysis. in Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies-volume 1. 2011. Association for Computational Linguistics. 40. Lee, M., W. Wang, and H.J.B.b. Yu, Exploring supervised and unsupervised methods to detect topics in biomedical text. 2006. 7(1): p. 140. 41. Hatch, P., N. Stokes, and J. Carthy. Topic Detection, a new application for lexical chaining. in the proceedings of BCS-IRSG. 2000. 42. Chali, Y., Topic detection of unrestricted texts: Approaches and evaluations. 2005. 43. Ko, Y., J.J.I.P. Seo, and Management, Text classification from unlabeled documents with bootstrapping and feature projection techniques. 2009. 45(1): p. 70-83. 44. Agrawal, R., T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. in Acm sigmod record. 1993. ACM. 45. De Boom, C., et al., Representation learning for very short texts using weighted word embedding aggregation. 2016. 80: p. 150-156. 46. Chen, M.J.a.p.a., Efficient vector representation for documents through corruption. 2017. 47. Goldberg, Y. and O.J.a.p.a. Levy, word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method. 2014. 48. Kim, Y.J.a.p.a., Convolutional neural networks for sentence classification. 2014. 49. Maaten, L.v.d. and G.J.J.o.m.l.r. Hinton, Visualizing data using t-SNE. 2008. 9(Nov): p. 2579-2605. 50. Van Der Maaten, L.J.T.J.o.M.L.R., Accelerating t-SNE using tree-based algorithms. 2014. 15(1): p. 3221-3245. 51. Sebastiani, F.J.A.c.s., Machine learning in automated text categorization. 2002. 34(1): p. 1-47. 52. Rijsbergen, C.J.V., Information Retrieval. 1979: Butterworth-Heinemann. 208. 53. Yang, Y. and X. Liu. A re-examination of text categorization methods. in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. 1999. ACM. 54. Yang, Y. A study of thresholding strategies for text categorization. in Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. 2001. ACM. 55. Yu, H., et al., Libshorttext: A library for short-text classification and analysis. 2013. 56. Joulin, A., et al., Bag of tricks for efficient text classification. 2016.
|