跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉以凝
研究生(外文):Yeh, I-Ning
論文名稱:微波氫氣電漿之流體模型數值模擬研究
論文名稱(外文):Fluid Model Numerical Simulation Study on Microwave Hydrogen Plasma Discharges
指導教授:柳克強
指導教授(外文):Leou, Keh-Chyang
口試委員:陳金順張家豪
口試委員(外文):Chen, Gen-ShunChang, Chia-Hao
口試日期:2018-10-15
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:93
中文關鍵詞:電漿微波電漿微波氫氣電漿
外文關鍵詞:PlasmaMicrowaveplasmaMicrowaveHydrogenplasma
相關次數:
  • 被引用被引用:2
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鑽石薄膜的合成與應用是目前許多學界及業界所研究的領域,其中目前最主要的合成方式即為微波電漿輔助化學氣相沉積(Microwave plasma-assisted CVD, MPACVD)。本研究旨為探討微波電漿的建模與電漿隨參數之變化,希望掌握在對於沉積速率之重要參數隨不同操作條件下的影響與趨勢變化,藉由二維軸對稱流體模型結合電磁波、流體熱傳理論來進行模擬計算,選用鑽石薄膜沉積中最主要的氣體氫氣,包含8種粒子與34條反應式,並使用頻率在2.45 GHz之微波源來產生微波電漿。透過模擬計算之結果分析比較電漿特性與操作參數之關聯性。
模擬結果顯示,微波進入腔體後激發預期之共振模態,在基板沉積平面上方成功點起直徑約40 mm之電漿球體。在氣壓提升的同時,電漿球體逐漸縮減且電子密度也下降,但發現氫原子密度有往基板沉積平面集中的趨勢,分布變小而中心密度卻上升的現象。改變微波功率的情況下,整體的電漿範圍有明顯的擴大,在功率提升的同時,電漿內部特性也有明顯的變化,結果也顯示對電漿的特性改變而言,微波功率之改變對電漿特性的影響比氣壓還要顯著,氣體溫度與氫原子密度也隨著功率增加而提高了不少。
Synthesis of diamond film has been widely studied by many researcher and industrial. The mainly method for synthesize diamond film is microwave plasma- assisted chemical vapor deposition (MPACVD). The purpose of this study is to investigate modelling of microwave plasma and the effect of operated parameters on the plasma properties. In different operated conditions, expect to control the trend of the major factor that affect growth rate. A fluid model combine electromagnetic wave theory and heat transfer theory based numerical simulation analysis is employed. The simulation model using hydrogen plasma takes into account 8 gaseous species and 34 reactions, and the discharge is generated by a 2.45 GHz microwave source. The correlation between the plasma behavior and the operating parameters is compared by analyzing the numerical simulation results.
Simulation results show that, resonant mode as expect excited when microwave enter the cavity. Formed a diameter almost 40 mm plasma just above the substrate successfully. When the pressure promoted, plasma bulk get narrowed gradually and electron also reduced. However, hydrogen atom density getting concentrated to the substrate as the pressure increase. The tendency that distribution region decreasing but the number density in the bulk become more. For different power case, plasma get extended obviously. As the power increase, plasma properties also changed obviously. For plasma properties, simulation results reflect that the effect of power is much clear than effect of pressure. Gas temperature and hydrogen atom density also go up as power increase.
摘要 i
圖目錄 3
表目錄 6
第一章 緒論 7
1.1 研究背景 7
1.2 微波電漿之簡介 10
1.3 研究動機與目的 11
第二章 文獻回顧 12
2.1 微波電漿輔助在鑽石薄膜沉積之模擬建立與回顧 12
2.2 共振模態與腔體結構文獻回顧 13
2.3 第二電漿區域產生文獻回顧 17
2.4 鑽石薄膜沉積主要參數影響文獻回顧 22
2.5 文獻回顧結論 23
第三章 物理模型與研究方法 25
3.1 模擬軟體介紹 25
3.2 模擬之物理模型 25
3.2.1 電子傳輸理論 26
3.2.2 離子與中性粒子傳輸理論 28
3.2.3 電磁波理論 31
3.2.4 流體熱傳理論 33
3.3 模擬之幾何結構與邊界條件 35
3.3.1 幾何結構 35
3.3.2 邊界條件 37
3.4 反應式資料庫 38
第四章 微波電漿模擬結果與討論 43
4.1 模擬條件與初始參數 43
4.2 暫態模擬之結果 44
4.2.1 共振模態之電場分佈 44
4.2.2 微波電漿基本放電特性 48
4.2.3 微波電漿之氣體溫度分析 58
4.2.4 微波電漿中重粒子之分析 61
4.3 模擬不同壓力下對電漿的影響 67
4.3.1 微波電漿隨壓力改變之放電特性 68
4.4 模擬不同微波功率下對電漿的影響 78
4.4.1 微波電漿隨微波功率改變之放電特性 79
4.5 模擬結果之比較 85
第五章 總結 90
5.1 結論 90
參考資料 91
[1] P. W. Bridgman, "SYNTHETIC DIAMONDS," Scientific American, vol. 193, pp. 42-46, 1955.
[2] W. G. Eversole, U. S. Patent 3,030,188, 1962.
[3] J. C. Angus, H. A. Will, and W. S. Stanko, "GROWTH OF DIAMOND SEED CRYSTALS BY VAPOR DEPOSITION," Journal of Applied Physics, vol. 39, pp. 2915-&, 1968.
[4] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, "VAPOR GROWTH OF DIAMOND ON DIAMOND AND OTHER SURFACES," Journal of Crystal Growth, vol. 52, pp. 219-226, 1981.
[5] C. Liu, X. C. Xiao, H. H. Wang, O. Auciello, and J. A. Carlisle, "Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films," Journal of Applied Physics, vol. 101, p. 6, Jun 2007.
[6] M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, et al., "Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD," Diamond and Related Materials, vol. 18, pp. 927-930, May-Aug 2009.
[7] S. J. Ray and G. M. Hieftje, "Microwave plasma torch - atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra," Analytica Chimica Acta, vol. 445, pp. 35-45, Oct 2001.
[8] A. T. Sowers, B. L. Ward, S. L. English, and R. J. Nemanich, "Field emission properties of nitrogen-doped diamond films," Journal of Applied Physics, vol. 86, pp. 3973-3982, Oct 1999.
[9] K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, and L. C. Chen, "Highly transparent nano-crystalline diamond films via substrate pretreatment and methane fraction optimization," Thin Solid Films, vol. 332, pp. 34-39, Nov 1998.
[10] F. Werner, D. Korzec, and J. Engemann, "Slot antenna 2.45 GHz microwave plasma source," Plasma Sources Science & Technology, vol. 3, pp. 473-481, Nov 1994.
[11] M. Moisan, C. Barbeau, R. Claude, C. M. Ferreira, J. Margot, J. Paraszczak, et al., "RADIO-FREQUENCY OR MICROWAVE PLASMA REACTORS - FACTORS DETERMINING THE OPTIMUM FREQUENCY OF OPERATION," Journal of Vacuum Science & Technology B, vol. 9, pp. 8-25, Jan-Feb 1991.
[12] M. A. Lieberman and R. A. Gottsho, Physics of thin films vol. 18. New York: Acdematic press, 1994.
[13] D. G. Goodwin, "SCALING LAWS FOR DIAMOND CHEMICAL-VAPOR-DEPOSITION .1. DIAMOND SURFACE-CHEMISTRY," Journal of Applied Physics, vol. 74, pp. 6888-6894, Dec 1993.
[14] D. G. Goodwin, "SCALING LAWS FOR DIAMOND CHEMICAL-VAPOR-DEPOSITION .2. ATOMIC-HYDROGEN TRANSPORT," Journal of Applied Physics, vol. 74, pp. 6895-6906, Dec 1993.
[15] K. Hassouni, S. Farhat, C. D. Scott, and A. Gicquel, "Modeling species and energy transport in moderate pressure diamond deposition H-2 plasmas," Journal De Physique Iii, vol. 6, pp. 1229-1243, Sep 1996.
[16] K. Hassouni, T. A. Grotjohn, and A. Gicquel, "Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor," Journal of Applied Physics, vol. 86, pp. 134-151, Jul 1999.
[17] G. Lombardi, K. Hassouni, G. D. Stancu, L. Mechold, J. Ropcke, and A. Gicquel, "Modeling of microwave discharges of H-2 admixed with CH4 for diamond deposition," Journal of Applied Physics, vol. 98, p. 12, Sep 2005.
[18] H. Yamada, A. Chayahara, Y. Mokuno, Y. Horino, and S. Shikata, "Simulation of temperature and gas flow distributions in region close to a diamond substrate with finite thickness," Diamond and Related Materials, vol. 15, pp. 1738-1742, Oct 2006.
[19] H. Yamada, A. Chayahara, Y. Mokuno, and S. Shikata, "Simulation with an improved plasma model utilized to design a new structure of microwave plasma discharge for chemical vapor deposition of diamond crystals," Diamond and Related Materials, vol. 17, pp. 494-497, Apr-May 2008.
[20] H. Yamada, A. Chayahara, Y. Mokuno, and S. Shikata, "Numerical microwave plasma discharge study for the growth of large single-crystal diamond," Diamond and Related Materials, vol. 54, pp. 9-14, Apr 2015.
[21] R. Spitzl, Patent Specification 6.198.224, 2001
[22] F. Silva, K. Hassouni, X. Bonnin, and A. Gicquel, "Microwave engineering of plasma-assisted CVD reactors for diamond deposition," Journal of Physics-Condensed Matter, vol. 21, p. 16, Sep 2009.
[23] W. Tan and T. A. Grotjohn, "MODELING THE ELECTROMAGNETIC-EXCITATION OF A MICROWAVE CAVITY PLASMA REACTOR," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 12, pp. 1216-1220, Jul-Aug 1994.
[24] M. P. J. Gaudreau, Patent Specification 4,866,346, 1989.
[25] M. M. Besen, E. Sevillano, and D. K. Smith, Patent Specification 5,501,740, 1996.
[26] M. Funer, C. Wild, and P. Koidl, "Simulation and development of optimized microwave plasma reactors for diamond deposition," Surface & Coatings Technology, vol. 116, pp. 853-862, Sep 1999.
[27] G. J. M. Hagelaar, K. Hassouni, and A. Gicquel, "Interaction between the electromagnetic fields and the plasma in a microwave plasma reactor," Journal of Applied Physics, vol. 96, pp. 1819-1828, Aug 2004.
[28] K. Hassouni, F. Silva, and A. Gicquel, "Modelling of diamond deposition microwave cavity generated plasmas," Journal of Physics D-Applied Physics, vol. 43, p. 45, Apr 2010.
[29] S. J. Harris and D. G. Goodwin, "GROWTH ON THE RECONSTRUCTED DIAMOND (100) SURFACE," Journal of Physical Chemistry, vol. 97, pp. 23-28, Jan 1993.
[30] H. Yamada, A. Chayahara, Y. Mokuno, and S. Shikata, "Model of Reactive Microwave Plasma Discharge for Growth of Single-Crystal Diamond," Japanese Journal of Applied Physics, vol. 50, p. 6, Jan 2011.
[31] R. S. Brokaw, "PREDICTING TRANSPORT PROPERTIES OF DILUTE GASES," Industrial & Engineering Chemistry Process Design and Development, vol. 8, pp. 240-&, 1969.
[32] R. L. Kinder and M. J. Kushner, "Consequences of mode structure on plasma properties in electron cyclotron resonance sources," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 17, pp. 2421-2430, Sep-Oct 1999.
[33] L. I. Stiel and G. Thodos, "THE VISCOSITY OF POLAR SUBSTANCES IN THE DENSE GASEOUS AND LIQUID REGIONS," Aiche Journal, vol. 10, pp. 275-277, 1964.
[34] K. Hassouni, S. Farhat, and C. D. Scott, Handbook of Industrial Diamond and Diamond Films. New York: Marcel Dekker, Inc, 1998.
[35] R. K. Janev, W. D. Langer, J. K. Evans, and D. E. Prost, Elementary Processes in Hydrogen-Helium Plasmas. Berlin: Springer, 1987.
[36] "http://www.lxcat.net."
[37] "www.quantemoldb.com."
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊