跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃星維
研究生(外文):Huang, Xing-Wei
論文名稱:具備電流校正功能之八位元電流數位類比轉換器應用於自體發光顯示器
論文名稱(外文):A 8-bit Compact Current DAC with Reference Current Calibration for Self-Luminous Displays
指導教授:盧志文盧志文引用關係
指導教授(外文):Lu, Chih-Wen
口試委員:黃柏鈞陳柏宏
口試委員(外文):Huang, Po-ChiunChen, Po-Hung
口試日期:2018-10-17
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:82
中文關鍵詞:有機電激發光二極體顯示器微型發光二極體顯示器源極驅動器電流數位類比轉換器
外文關鍵詞:OLED DisplaysuLED DisplaysSource DriverCurrent DAC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於顯示器的應用不斷擴張,且世人對顯示器的需求也漸漸提高,有機電激發光二極體顯示器及發光二極體顯示器等自體發光顯示器的應用也越來越被廣泛使用,再結合微型化和矩陣化的技術日漸成熟等原因,使得發光二極體能夠製作得相當微小且應用在高解析度顯示器上。然而自體發光顯示器中有機電激發光二極體顯示器會隨著使用時間的增加導致電流改變,因此,必須根據所需要的亮度不同而進行電流校正。微型發光二極體顯示器也因為通道數目相當多,以至於通道間電流數據的一致性就顯得相當重要,因此本論文提出一具備電流校正功能的電流數位類比轉換器應用於自體發光顯示器的源極驅動電路,在TSMC 0.18µm 1P6M 3.3V CMOS製程下的模擬結果,經過電流校正後的電流標準差為16.63 nA,傳統的電流複製方式電流標準差為158.32 nA。相較於傳統的方式,電流標準差小了141.69 nA,INL值為0.0112 LSB、DNL值為0.0136 LSB 。量測結果的電流標準差為42.66 nA,INL值為1.79 LSB、DNL值為-1.314 LSB。
In recent years ,due to displays technology rapid development and the application of self-luminous displays such as OLED displays and LED displays has become more and more popular, and combined with the massive transfer technology, LED can be made quite small and applied to high-resolution displays. However, OLED face the current degradation problem ,therefore require current calibration during the display time. And because of µLED displays have a large number of channels, so that the uniformity of current data between channels is very important. According these reason, this paper proposes a current DAC with current calibration function for the source driver of self-luminous displays. Under the TSMC 0.18µm 1P6M 3.3V CMOS technology and after reference current calibration, the standard deviation of the current is 16.63 nA, And using the traditional method, current standard deviation is 158.32 nA. Compared with the traditional method, the standard deviation decrease 141.69 nA, and the INL is 0.0112 LSB、DNL is 0.01136 LSB。And the standard deviation of the measurement result is 42.66 nA,INL is 1.79 LSB、DNL is -1.314 LSB。
摘要---------------------------------------------I
Abstract----------------------------------------II
誌謝---------------------------------------------III
圖目錄--------------------------------------------VI
表目錄--------------------------------------------X
第一章 緒論--------------------------------------1
1.1 論文結構----------------------------------1
1.2 研究背景----------------------------------1
1.3 研究動機----------------------------------2
第二章 顯示器介紹--------------------------------3
2.1 自體發光顯示器介紹-----------------------------4
2.1.1 有機電激發光二極體---------------------------4
2.1.2 發光二極體----------------------------------6
2.1.3 微型發光二極體------------------------------8
2.2 顯示器優缺點比較------------------------------10
第三章 電路實現與設計------------------------------12
3.1 自體發光顯示器像素驅動模式介紹------------------12
3.2 電流驅動模式之自體發光顯示器系統介紹------------14
3.3 具電流校正功能之電流數位類比轉換器系統介紹-------16
3.4 提出之電流數位類比轉換器設計及子電路------------18
3.4.1 通道電流校正原理----------------------------20
3.4.2 通道電流校正流程說明-------------------------22
3.4.3 電流數位類比轉換器介紹-----------------------30
3.4.3.1 傳統二進制權重轉換電流數位類比轉換器---------30
3.4.3.2 除法型電流數位類比轉換器--------------------31
3.5 電流校正系統介紹--------------------------------40
3.5.1 積分器架構及設計------------------------------44
3.5.2 共模迴授電路----------------------------------49
3.5.3 偏壓電路-------------------------------------50
3.5.4 比較器---------------------------------------51
3.5.5 電流減法器-----------------------------------53
第四章 電路模擬與佈局-------------------------------54
4.1 電路模擬---------------------------------------54
4.2 電路佈局---------------------------------------59
第五章 晶片量測環境及結果---------------------------62
5.1 印刷電路板設計----------------------------------62
5.2 量測原理----------------------------------------63
5.3 量測環境與儀器介紹------------------------------64
5.4 量測結果與討論----------------------------------66
第六章 結論與未來展望--------------------------------77
參考文獻--------------------------------------------80
[1] H. Kim, J. Jeon, et al., "A 0.014mm2 9b switched-current DAC for AMOLED mobile display drivers," ISSCC Dig. Tech. Paper, pp. 316-318, Jul. 2011.
[2] J. -Y. Jeon, et al., “A Direct-Type Fast Current Driver for Medium- to Large-Size AMOLED Displays,” ISSCC Dig. Tech. Papers, pp. 174-175, Feb. 2008.
[3] Y.-J. Jeon Y.-S. Son, et al., "A Cascaded-Dividing Current DAC with Fine Pitch for High-Resolution AMOLED Display Drivers" SID Digest, vol. 38, no. 1,pp. 1644-1646, May 2007.
[4] U. Cini "A Low-Offset High CMRR Current-Mode Instrumentation Amplifier Using Differential Difference Current Conveyor" ICECS, pp. 64-67, Dec. 2014.
[5] Y.-J. Jeon, J.-Y. Jeon, , et al., “Design method of area-efficient and uniform channel DACs in current-mode AMOLED display data drivers,” IEEE Trans. Consum. Electron., vol. 56, no. 2, pp. 271–279,May 2010.
[6] J. Bang et al., "A Hybrid AMOLED Driver IC for Real-Time TFT Nonuniformity Compensation," in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 966-978, Apr. 2016.
[7] A. Nathan, A. Kumar, et al., “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1477–1486, Sep. 2004.
[8] D.-U. Jin et al., “World-largest (6.5”) flexible full color top emission AMOLED display on plastic film and its bending properties,” SID Symp. Dig. Tech. Papers, vol. 40, no. 1, pp. 983–985, Jul. 2012.
[9] N. Komiya, C. Oh, K. Eom, et al., “A 2.0-in. AMOLED panel with voltage programming pixel circuits and point scanning data driver circuits,” in Proc. Int. Disp. Workshops, no. 11, pp. 283–286, 2004
[10] H.-J. In and O.-K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron. Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
[11] M. Ohta, H. Tsutsu, et al., “A novel current programmed pixel for active matrix OLED displays,” SID Symp. Dig. Tech. Papers, vol. 34, no. 1, pp. 108–111, May 2003.
[12] J. H. Baek et al., “A current-mode display driver IC using sample-andhold scheme for QVGA full-color AMOLED displays,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2974–2982, Dec. 2006.
[13] Chih-Lung Lin, Po-Syun Chen, et al., “A Three-Transistor Pixel Circuit to Compensate for Threshold Voltage Variations of LTPS TFTs for AMOLED Displays, “ J. Display Technol, vol. 11, no. 2, pp. 146-148, Feb. 2015.
[14] Cuicui Wang, Chuanli Leng, et al., “An Accurate and Fast Current-Biased Voltage-Programmed AMOLED Pixel Circuit With OLED Biased in AC Mode, “ J. Display Technol, VOL. 11, NO. 7, pp. 615-619, Jul. 2015.
[15] Chih-Lung Lin, Fu-Hsing Chen, et al., “New a-IGZO Pixel Circuit Composed of Three Transistors and One Capacitor for Use in High-Speed-Scan AMOLED Displays, “ J. Display Technol, vol. 11, no. 12, pp. 1031 - 1034, Dec. 2015.
[16]TechNews.”圖表看時事”Apr.,2017.Intetnet:https://technews.tw/2017/04/13/ microled-inforgraphic/
[17]Ansforce.”科學月刊”Sep.,2017.Intetnet:https://www.ansforce.com/blog /post/S1-p987
[18] S. J. Daubert, D. Vallancourt, et al., “Current copier cells,” Electron. Lett., vol. 24, no. 25, pp. 1560–1562, Dec. 1988
[19] Y.-S. Son, Y.-J. Jeon, et al., “Transient charge feedforward driver for high-speed current-mode data driving in active-matrix OLED displays,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 3,pp. 539–547, Mar. 2010.
[20] A. Nathan, et al., “Driving Schemes for a-Si and LTPS AMOLED Displays,”
IEEE J. Display Tech., vol. 1, no. 3, pp. 267-277, Dec. 2005.
[21] J. H. Baek et al., “A Current Driver IC using a S/H for QVGA Full-Color Active-
Matrix Organic LED Mobile Displays,” ISSCC Dig. Tech. Papers, pp. 609-618,
Feb. 2006.
[22] W. Guggenbuhl, et al., “Switched-Current Memory Circuits for High-Precision Applications”, IEEE J. Solid-State Circuits, vol. 29, no. 9, pp. 1108-1116, Sep. 1994.
[23] H.-J. In, O-K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron. Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
[24] J.H. Jang, M. Kwon, et al.,”A PDM-Based Digital Driving Technique Using ΔΣ Modulation for QVGA Full-Color AMOLED Display Applications “ J. Display Technol. vol. 6 no. 7 pp 269-278 Jul. 2010.
[25] Y. Jeon, J. Jeon, et al., "A High-Speed Current-Mode Data Driver With Push-Pull Transient Current Feedforward for Full-HD AMOLED Displays," IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 1881-1895, Sep. 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top