跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/10 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林上仁
研究生(外文):Lin, Shang-Ren
論文名稱:藉由光電子能譜顯微技術建構過渡金屬硫化物垂直異質結構接面之能帶排列
論文名稱(外文):Determination of Band Alignments at the Interfaces of TMDC Vertical Heterostructures Using Soft X-ray Photoemission Spectromicroscopy
指導教授:果尚志
指導教授(外文):Gwo, Shangjr
口試委員:陳家浩安惠榮魏德新
口試委員(外文):Chen, Chia-HaoAhn, HyeyoungWei, Der-Hsin
口試日期:2019-01-08
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:二維材料過渡金屬硫化物機械剝離乾式轉印凡得瓦異質結構光電子能譜顯微術能帶排列
外文關鍵詞:2D materialsTMDC materialsMechanical exfoliationDry transfervan der Waals heterostructuresPhotoemission spectromicroscopyBand alignments
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  自石墨烯成功被剝離出來後,因其獨特的材料特性,開啟了人們對於二維材料的研究與發展。其中過渡金屬硫化物(Transition Metal Dichalcogenides, TMDC)是近年來最受矚目的新星,其晶體結構主要由一個過渡金屬與兩個硫屬原子,以共價鍵連結成六角結構形成層狀材料,而根據不同過渡金屬和硫屬元素的搭配,可組合出具有不同特性的層狀材料。
  然而隨著各國研究團隊相繼針對該材料進行研究,已有許多文獻對於單一TMDC材料於光學、電性甚至元件應用等方面,提供相當完整的資訊,於是以不同TMDC材料形成的異質結構系統,不僅提供了額外的自由度能調控材料的特性,也提供更豐富的發展與應用性,成為了熱門的研究主題。而了解異質接面的能帶排列,更是其中最基本、也最為重要的研究項目之一。
  本文將利用傳統機械剝離的方法,自塊材晶體中分離出單層二硫化鎢(WS2)及二硒化鉬(MoSe2)材料,並進一步藉由乾式轉印系統,將兩單層材料透過凡得瓦力堆疊形成異質結構。而整個研究的主題,將針對WS2和MoSe2所形成的垂直異質結構,利用國輻中心高解析度的掃描式光電子能譜顯微系統(Scanning Photoemission Microscopy/Spectroscopy, SPEM/S),建構異質接面間的能帶排列。同時,我們也將實驗量測結果與期刊文獻做對照,並以系統性的歸納和統整,試圖找出TMDC異質結構在能帶排列上的規則,期許為二維凡得瓦異質接面在能帶工程方面,做出一點微小貢獻。
  Transition metal dichalcogenides (TMDC) are the most attractive 2D materials in recent years due to their extraordinary electronic and optical properties. The TMDC heterostructures are not only having additional degree of freedom to control the material properties but also offering richer developments and applications. Therefore, clearly understanding the band alignment at the interface is the most basic and important issue.
  In this study, single-layered tungsten disulfide (WS2) and molybdenum diselenide (MoSe2) were exfoliated from bulk crystal, and both of them formed the vertical heterostructures by two-step transfer process. The subject of the experiment is using the high-resolution scanning photoemission microscopy/spectroscopy (SPEM/S) to construct the band alignments at the interfaces of WS2/MoSe2 and MoSe2/WS2 vertical heterostructures. Finally, we compared our experimental results with literatures and systematically summarized them for trying to find out the alignment rule of TMDC heterostructures. Expect to make a little contribution to the band engineering of 2D van der Waals heterostructures.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1前言 1
1.2研究目的 3
第二章 文獻探討 4
2.1二維TMDC材料之特性簡介 4
2.1.1 TMDC晶體與能帶結構 4
2.1.2 TMDC光學及聲子振動特性 8
2.2二維TMDC異質接面之能帶結構 10
第三章 實驗儀器及研究方法 14
3.1同步輻射光源簡介(Synchrotron Radiation Light Source) 14
3.2光電子能譜術(Photoemission Spectroscopy, PES) 19
3.3 X射線光電子能譜術(X-ray Photoemission Spectroscopy, XPS) 20
3.3.1 XPS原理簡介 20
3.3.2儀器能量校準 22
3.3.3 XPS能譜分析 24
3.4掃描式光電子能譜顯微術(Scanning Photoemission Microscopy / Spectroscopy, SPEM/S) 25
3.5光學量測分析(PL & Raman Spectrum) 28
3.5.1光激發螢光光譜(Photoluminescence Spectrum, PL)原理簡介 29
3.5.2拉曼光譜(Raman Spectrum)原理簡介 30
第四章 實驗樣品製備 31
4.1機械剝離法(Mechanical Exfoliation Method) 31
4.2乾式轉印法(Dry Transfer Method) 33
第五章 結果與討論 35
5.1單層二硫化鎢(ML-WS2)實驗結果 36
5.1.1材料轉印前(ML-WS2/PDMS)之光學量測分析 36
5.1.2材料經轉印後(ML-WS2/Si)之光電子能譜分析 38
5.2單層二硒化鉬(ML-MoSe2)實驗結果 40
5.2.1材料轉印前(ML-MoSe2/PDMS)之光學量測分析 40
5.2.2材料經轉印後(ML-MoSe2/Si)之光電子能譜分析 42
5.3 WS2/MoSe2異質接面之實驗結果 44
5.3.1材料轉印前(ML-WS2 or MoSe2/PDMS)之光學量測分析 44
5.3.2材料經兩步驟轉印後(WS2/MoSe2/Si)之光電子能譜分析 46
5.4 MoSe2/WS2異質接面之實驗結果 49
5.4.1材料轉印前(ML-MoSe2 or WS2/PDMS)之光學量測分析 49
5.4.2材料經兩步驟轉印後(MoSe2/WS2/Si)之光電子能譜分析 51
5.5 WS2/MoSe2與MoSe2/WS2異質接面能帶圖(Band Alignments) 53
5.5.1 WS2/MoSe2/Si與MoSe2/WS2/Si之XPS能譜 53
5.5.2 WS2/MoSe2/Si與MoSe2/WS2/Si異質接面之能帶排列 54
5.6二維凡得瓦異質接面之能帶量測結果與討論 55
5.6.1傳統半導體異質接面之能帶排列規則 55
5.6.2 TMDC異質接面之能帶排列討論 57
第六章 結論 64
第七章 參考文獻 65
附錄 69
[1] K. S. Novoselov et al., Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669 (2004).
[2] R. Lv et al., Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more. Nano Today 10, 559-592 (2015).
[3] X. Ling et al., The renaissance of black phosphorus. Proc Natl Acad Sci U S A 112, 4523-4530 (2015).
[4] B. Radisavljevic et al., Single-layer MoS2 transistors. Nat Nanotechnol 6, 147-150 (2011).
[5] Y. H. Lee et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv Mater 24, 2320-2325 (2012).
[6] L. Britnell et al., Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 340, 1311-1314 (2013).
[7] Q. H. Wang et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7, 699-712 (2012).
[8] A. Kormányos et al., k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Materials 2, 022001 (2015).
[9] A. Kuc et al., Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Physical Review B 83, 245213 (2011).
[10] W. Zhao et al., Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets. Acc Chem Res 48, 91-99 (2015).
[11] Y. Zhang et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol 9, 111-115 (2014).
[12] K. F. Mak et al., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys Rev Lett 105, 136805 (2010).
[13] A. Molina-Sánchez, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Physical Review B 84, 155413 (2011).
[14] C. Lee et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 4, 2695-2700 (2010).
[15] A. Berkdemir et al., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports 3, 1755 (2013).
[16] H. M. Hill et al., Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. Nano Lett 16, 4831-4837 (2016).
[17] N. R. Wilson et al., Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Science Advances 3, e1601832 (2017).
[18] M. H. Chiu et al., Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat Commun 6, 7666 (2015).
[19] D.-J. Huang, Introduction to Synchrotron Light Sources. National Synchrotron Radiation Research Center.
[20] https://en.wikipedia.org/wiki/Synchrotron_radiation
[21] https://www.nsrrc.org.tw/
[22] P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications, John Wiley & Sons, Ltd, (2011).
[23] https://en.wikipedia.org/wiki/Photoemission_spectroscopy
[24] F. Reinert, S. Hüfner, Photoemission spectroscopy—from early days to recent applications. New Journal of Physics 7, 97-97 (2005).
[25] M. Uo et al., Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Japanese Dental Science Review 51, 2-9 (2015).
[26] 汪建民, 材料分析, 中國材料科學學會 (1998).
[27] J. C. Vickerman, Surface Analysis: The Principal Techniques, John Wiley & Sons, Ltd, (2009).
[28] K. Horn, Semiconductor Interface Studies using Core and Valence Level Photoemission. Applied Physics A 51, 289-304 (1990).
[29] 洪一弘, 同步輻射研究中心簡訊, (1999).
[30] I. H. Hong et al., Performance of the SRRC scanning photoelectron microscope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468, 905-908 (2001).
[31] J. Guo., X-Rays in Nanoscience: Spectroscopy, Spectromicroscopy, and Scattering Techniques, Wiley‐VCH Verlag GmbH & Co. KGaA, (2010).
[32] S. B. Desai et al., Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv Mater 28, 4053-4058 (2016).
[33] W. Zhao et al., Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5, 9677-9683 (2013).
[34] J. Xia et al., CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6, 8949-8955 (2014).
[35] R. L. Anderson, Germanium-Gallium Arsenide Heterojunctions. IBM Journal of Research and Development 4, 283-287 (1960).
[36] https://en.wikipedia.org/wiki/Anderson%27s_rule
[37] A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures. Nature 499, 419-425 (2013).
[38] C. Gong et al., Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters 103, 053513 (2013).
[39] Q. Zhang et al., Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures. Nature Communications 7, 13843 (2016).
[40] M.-H. Chiu et al., Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions. Advanced Functional Materials 27, 1603756 (2017).
[41] Y.-H. Chang et al., Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano 8, 8582-8590 (2014).
[42] 王譽憲, 二維過渡金屬硫屬化合物異質結構之電子能帶結構與介面極化效應, 碩士論文, 國立清華大學, (2017).
[43] https://en.wikipedia.org/wiki/Standard_deviation
[44] 辜翊航, 異質介面之電子能帶結構研究-石墨烯/氧化鋅與二硫化鉬/二硫化鎢, 碩士論文, 國立清華大學, (2016).
[45] M. Tangi et al., Determination of band offsets at GaN/single-layer MoS2 heterojunction. Applied Physics Letters 109, 032104 (2016).
[46] M. Tangi et al., Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Applied Physics Letters 111, 092104 (2017).
[47] E. Ponomarev et al., Semiconducting van der Waals Interfaces as Artificial Semiconductors. Nano Lett 18, 5146-5152 (2018).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊