[1] K. S. Novoselov et al., Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669 (2004).
[2] R. Lv et al., Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more. Nano Today 10, 559-592 (2015).
[3] X. Ling et al., The renaissance of black phosphorus. Proc Natl Acad Sci U S A 112, 4523-4530 (2015).
[4] B. Radisavljevic et al., Single-layer MoS2 transistors. Nat Nanotechnol 6, 147-150 (2011).
[5] Y. H. Lee et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv Mater 24, 2320-2325 (2012).
[6] L. Britnell et al., Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 340, 1311-1314 (2013).
[7] Q. H. Wang et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7, 699-712 (2012).
[8] A. Kormányos et al., k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Materials 2, 022001 (2015).
[9] A. Kuc et al., Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Physical Review B 83, 245213 (2011).
[10] W. Zhao et al., Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets. Acc Chem Res 48, 91-99 (2015).
[11] Y. Zhang et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol 9, 111-115 (2014).
[12] K. F. Mak et al., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys Rev Lett 105, 136805 (2010).
[13] A. Molina-Sánchez, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Physical Review B 84, 155413 (2011).
[14] C. Lee et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 4, 2695-2700 (2010).
[15] A. Berkdemir et al., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports 3, 1755 (2013).
[16] H. M. Hill et al., Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. Nano Lett 16, 4831-4837 (2016).
[17] N. R. Wilson et al., Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Science Advances 3, e1601832 (2017).
[18] M. H. Chiu et al., Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat Commun 6, 7666 (2015).
[19] D.-J. Huang, Introduction to Synchrotron Light Sources. National Synchrotron Radiation Research Center.
[20] https://en.wikipedia.org/wiki/Synchrotron_radiation
[21] https://www.nsrrc.org.tw/
[22] P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications, John Wiley & Sons, Ltd, (2011).
[23] https://en.wikipedia.org/wiki/Photoemission_spectroscopy
[24] F. Reinert, S. Hüfner, Photoemission spectroscopy—from early days to recent applications. New Journal of Physics 7, 97-97 (2005).
[25] M. Uo et al., Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Japanese Dental Science Review 51, 2-9 (2015).
[26] 汪建民, 材料分析, 中國材料科學學會 (1998).
[27] J. C. Vickerman, Surface Analysis: The Principal Techniques, John Wiley & Sons, Ltd, (2009).
[28] K. Horn, Semiconductor Interface Studies using Core and Valence Level Photoemission. Applied Physics A 51, 289-304 (1990).
[29] 洪一弘, 同步輻射研究中心簡訊, (1999).
[30] I. H. Hong et al., Performance of the SRRC scanning photoelectron microscope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468, 905-908 (2001).
[31] J. Guo., X-Rays in Nanoscience: Spectroscopy, Spectromicroscopy, and Scattering Techniques, Wiley‐VCH Verlag GmbH & Co. KGaA, (2010).
[32] S. B. Desai et al., Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv Mater 28, 4053-4058 (2016).
[33] W. Zhao et al., Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5, 9677-9683 (2013).
[34] J. Xia et al., CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6, 8949-8955 (2014).
[35] R. L. Anderson, Germanium-Gallium Arsenide Heterojunctions. IBM Journal of Research and Development 4, 283-287 (1960).
[36] https://en.wikipedia.org/wiki/Anderson%27s_rule
[37] A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures. Nature 499, 419-425 (2013).
[38] C. Gong et al., Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters 103, 053513 (2013).
[39] Q. Zhang et al., Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures. Nature Communications 7, 13843 (2016).
[40] M.-H. Chiu et al., Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions. Advanced Functional Materials 27, 1603756 (2017).
[41] Y.-H. Chang et al., Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano 8, 8582-8590 (2014).
[42] 王譽憲, 二維過渡金屬硫屬化合物異質結構之電子能帶結構與介面極化效應, 碩士論文, 國立清華大學, (2017).[43] https://en.wikipedia.org/wiki/Standard_deviation
[44] 辜翊航, 異質介面之電子能帶結構研究-石墨烯/氧化鋅與二硫化鉬/二硫化鎢, 碩士論文, 國立清華大學, (2016).[45] M. Tangi et al., Determination of band offsets at GaN/single-layer MoS2 heterojunction. Applied Physics Letters 109, 032104 (2016).
[46] M. Tangi et al., Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Applied Physics Letters 111, 092104 (2017).
[47] E. Ponomarev et al., Semiconducting van der Waals Interfaces as Artificial Semiconductors. Nano Lett 18, 5146-5152 (2018).