[1] 奈米材料,2019, https://zh.wikipedia.org/wiki/%E7%BA%B3%E7%B1%B3%E6% 9D%90%E6%96%99
[2] Zinc Oxide. 2019. https://zh.wikipedia.org/wiki/%E6%B0%A7%E5%8C%96%E9 %8B%85
[3] 許安迪。2010。以水熱法製備氧化鋅奈米線與銀奈米顆粒之研究。碩士論文。國立臺南大學電機工程研究所。[4] Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. (1998). “Hiraga.Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization. ”Journal of Applied Physics. 87[7]. 3912-3918.
[5] 王良凱。2016。以低溫水熱法合成鉀摻雜氧化鋅奈米線之製程技術與其電子元件應用。碩士論文。國立臺南大學電機工程研究所。[6] 趙偉迪。2009。氧化鋅奈米線應用於發光二極體之研製。碩士論文。國立台灣師範大學機電科技研究所。[7] 高義典。2013。以Hotwire系統輔助LPCVD法製程鈦/銅摻雜氧化鋅奈米柱之研究。碩士論文。國立臺南大學電機工程研究所。[8] K. Vanheusden , W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt. 1996. “Mechanisms behind green photoluminescence in ZnO phosphor powders”, Journal of Applied Physics.
[9] B. Lin and Z. Fu. 2001. “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Applied Physics Letters
[10] 還原氧化石墨烯。2019。https://kknews.cc/zh-tw/science/b85lzmn.html
[11] Xiayang Yu, Jian Xu, Huanming Lu, Gang Fang. 2017. “Sol-gel derived Al-doped zinc oxide - Reduced graphene oxide nanocomposite thin films”, Journal of Alloys and Compounds, 699. 79-86.
[12] 半導體感測器。2019。https://www.itsfun.com.tw/%E5%8D%8A%E5%B0%8E%E9% AB%94%E6%84%9F%E6%B8%AC%E5%99%A8/wiki-6246736
[13] 方崇丞。2017。以低溫水熱法合成鈰摻雜氧化鋅奈米線之。碩士論文。國立臺南大學電機工程研究所。
[14] 蕭特基勢壘。2019。https://zh.wikipedia.org/wiki/%E6%AD%90%E5%A7%86%E6% 8E%A5%E8%A7%B8
[15] Electron affinity, 2019, https://zh.wikipedia.org/wiki/%E7%94%B5%E5%AD%90 %E4%BA%B2%E5%90%88%E8%83%BD#cite_note-Compendiumof-1
[16] 鄭博宇。2016。氧化鋅奈米線摻雜鈉之P-Type研究。碩士論文。國立臺南大學電機工程研究所。[17] S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D.S. Presicce, A.M. Taurino. 2003. “Solid state gas sensors state of the art and future activities,” Journal Of Optoelectronics And Advanced Materials, 5(5). 1335-1348.
[18] 許嘉豪。2009。碳對氧化鎵薄膜氣體感測器感測特性之影響。碩士論文。國立成功大學化學工程學系研究所。[19] C. L. Hsu, Y. D. Gao, Y. S. Chen, T. J. Hsueh. 2014. “Vertical Ti doped ZnO nanorods based on ethanol gas sensor preparedon glass by furnace system with hotwire assistance,” Sensors and Actuators B, 192. 550-557.
[20] 蘇奕龍。2014。硫摻雜氧化鋅奈米線合成於軟性PET基板成長之壓電元件研究。碩士論文。國立臺南大學電機工程研究所。[21] C. L. Hsu, H. H. Li, and T. J. Hsueh. 2013. “Water- and Humidity-Enhanced UV Detector by Using p-Type La-Doped ZnO Nanowires on Flexible Polyimide Substrate,” RCS Applied Materials and Interfaces , 5(21). 11142-11151.
[22] 普朗克常數。2019。https://zh.wikipedia.org/wiki/%E6%99%AE%E6%9C% 97%E5%85%8B%E5%B8%B8%E6%95%B0
[23] Cheng-Liang Hsu, Hsin-Yu Wu, Chung-Cheng Fang, and Sheng-Po Chang, 2018, “Solution-Processed UV and Visible Photodetectors Based on Y‑Doped ZnO Nanowires with TiO2 Nanosheets and Au Nanoparticles”, ACS Applied Energy Materials Article, 1, 5, 2087-2095
[24] M.R. Alenezi, A.S. Alshammari, K.D.G.I. Jayawardena, M.J. Bellatis, S.J. Henley, S.R.P. Silva. 2013. “Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensors,” Journal Of Physical Chemistry C, 117(34). 17850-17858.
[25] Cheng-Liang Hsu, Yu-Che Wang, 2018, “Solution-Processed UV/Visible Photodetectors Based on Few p-n NiO/ZnO Nanowires with Pd Nanoparticles”,
[26] 低維奈米材料。2019。https://scitechvista.nat.gov.tw/c/s93r.htm
[27] B. Lewis. 1974. “The growth of crystals of low supersaturation: I. Theory,” Journal of Crystal Growth, 21(1), 29-39.
[28] S. R. Hejazi, H. R. Madaah Hosseini, M. Sasani Ghamsari. (2008).“The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism.”Journal of Alloys and Compounds. 455. 353-357.
[29] D.I. Suh , C.C. Byeon and C.L. Lee. 2010. “Synthesis and optical characterization of vertically grown ZnO nanowires in high crystallinity through vapor–liquid–solid growth mechanism”, Applied Surface Science .
[30] 水熱法。2019。https://baike.baidu.com/item/%E6%B0%B4%E7%83%AD%E6%B3 %95
[31] 水熱法。2019。https://zh.wikipedia.org/wiki/%E6%B0%B4%E7%83%AD%E5%90% 88%E6%88%90%E6%B3%95
[32] Sol-Gel. 2019. https://zh.wikipedia.org/wiki/%E6%BA%B6%E8%86%A0%E5%87%
9D%E8%86%A0
[33] Sol-Gel. 2019. https://www.itsfun.com.tw/%E6%BA%B6%E8%86%A0%E5%87%
9D%E8%86%A0%E6%B3%95/wiki-7406773-2011953
[34] 何葦澤。2014。溶膠配製及膠體特性分析與溶膠凝膠法製備氧化矽薄膜。碩士論文。指導教授,駱榮富。
[35] 國立成功大學微奈米中心。2019。儀器設備介紹。http://cmnst.ncku.edu.tw/p/ 412-1006-13238.php?Lang=zh-tw
[36] EDS. 2019. http://www.eaglabs.com.tw/eds.html.
[37] EDS. 2019. https://tw.answers.yahoo.com/question/index?qid=20051224000014 KK00540
[38] EDS. 2019. https://www.garefully.com/eds.html
[39] Raman. 2019. http://www.teo.com.tw/brand.asp?lv=0&id=70
[40] Raman. 2019. https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85 %89%E8%AD%9C%E5%AD%B8
[41] 國立成功大學貴重儀器中心。2019。儀器設備介紹。http://idc.ord.ncku.edu.tw
[42] 桌上雷射雕刻機。2019。儀器設備介紹。https://tw.flux3dp.com/beambox/
[43] Xiayang Yu, Jian Xu, Huanming Lu, Gang Fang, 2017, “ Sol-gel derived Al-doped zinc oxide - Reduced graphene oxide nanocomposite thin films”, Journal of Alloys and Compounds, 699, 79-86.
[44] 張均豪。2008。以溶膠凝膠法製備氧化鋅奈米結構於半導體型氣體感測器之應用。碩士論文。國立台灣師範大學機電科技學系研究所。[45] Abhisek Chakrabortya, Antonio Agrestib, Roberto Pizzoferrato, Fabio De Matteis, Andrea Orsini, Pier Gianni Medaglia, 2017, “Study of structural and optical properties of low temperature photo-activated ZnO-rGO composite thin film”, Materials Research Bulletin, 91, 227–231.
[46] Haidong Gu, Lei Yu, Juan Wang, Jian Yao, Feng Chen, 2017, “A sol-gel preparation of ZnO/graphene composite with enhanced electronic properties”, Materials Letters, 196, 168–171.
[47] Jinghai Yang, Xiaoting Zhao, Xiaonan Shan, Hougang Fan, Lili Yang, Yongjun Zhang, Xiuyan Li, 2013, “Blue-shift of UV emission in ZnO/graphene composites”, Journal of Alloys and Compounds, 556, 1–5.
[48] Lijun Qi, Lingmin Yu, Zongyuan Liu, Fen Guo, Yong qiang Gu, Xinhui Fan, 2018, “An enhanced optoelectronic NO2 gas sensors based on direct growth ZnO nanowalls in situ on porous rGO”, Journal of Alloys and Compounds, 749, 244-249.
[49] Bing Xue, Yingquan Zou, 2018, “High photocatalytic activity of ZnO–graphene composite”, Journal of Colloid and Interface Science, 529, 306–313.
[50] Sunil Meti, Mohammad R. Rahman, Md. Imteyaz Ahmad, K. Udaya Bhat, 2018, “Chemical free synthesis of graphene oxide in the preparation of reduced graphene oxide-zinc oxide nanocomposite with improved photocatalytic properties”, Applied Surface Science, 451, 67–75.
[51] Mahdi Hajimazdarani, Nima Naderi⁎, Benyamin Yarmand, Alireza Kolahi, Parvaneh Sangpour, 2018, “Enhanced optical properties of ZnS–rGO nanocomposites for ultraviolet detection applications”, Ceramics International, 44, 17878–17884.
[52] High Surface Area Reduced Graphene Oxide。2019。材料來源。https://graphene-supermarket .com/High-Surface-Area-Reduced-Graphene-Oxide.html
[53] 蘇威年。2012。石墨烯/氧化石墨烯層間限制空間成長奈米結構之電化學儲能材料。行政院國家科學委員會補助專題研究計畫。NSC 99-2218-E-011-021-MY2。
[54] Cheng-Liang Hsu, Li-Fan Chang, Ting-Jen Hsueh, 2017, “Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature”, Sensors & Actuators: B. Chemical.
[55] Cheng-Liang Hsu, Yen-Cheng Chuo, Liang-Wei Hsu, Yen-Liang Pan, and Yi-Hung Liu, 2019, “UV and Visible Light Induced Photocatalytic Degradation on p–n Cu2O/ZnO Nanowires Decorated with Au–Pd Alloy Nanoparticles”, Adv. Mater. Interfaces, 1801744.
[56] 光譜光視效率。2019。https://zh.wikipedia.org/wiki/%E5%85%89%E5%BA%A6 %E5%87%BD%E6%95%B0
[57] 薄膜電阻。2019。https://zh.wikipedia.org/wiki/%E8%96%84%E8%86%9C%E7% 94%B5%E9%98%BB
[58] Donaid A. Neaman, 2015, “Semiconductor Physics and Devices:Basic Principles, 4e”, ISBN:978-986-157-825-5
[59] Meng-Chu Chen, Cheng-Liang Hsu, Ting-Jen Hsuehm, 2014, “Fabrication of Humidity Sensor Basedm on Bilayer Graphene”, IEEE ELECTRON DEVICE LETTERS, VOL. 35, NO. 5.
[60] WangKang, XuJimeng, WangXitao, 2016, “The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites”, Applied Surface Science, Part A, 270-275.
[61] H. McMurdie et al., "JCPDS—International centre for diffraction data task group on cell parameter refinement," Powder Diffr, vol.1, pp. 66-76, 1986.