跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/21 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黨浩凡
研究生(外文):TANG, HAO-FAN
論文名稱:氧化鋅與石墨烯奈米複合材料對其雷射加工 之電子元件應用
論文名稱(外文):Electronic Devices Based on Zinc Oxide and Graphene Nanocomposites by Laser processing
指導教授:許正良許正良引用關係
指導教授(外文):Hsu, Cheng-Liang
口試委員:許正良張守進邱裕中
口試委員(外文):HSU, CHENG-LIANGCHANG, SHOOU-JINNCHIOU, YU-ZUNG
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:105
中文關鍵詞:溶膠凝膠法氧化鋅還原氧化石墨烯雷射雕刻光感測器氣體感測器
外文關鍵詞:sol-gelzinc oxiderGOlaser engravingphotosensor
DOI:gas sensor
相關次數:
  • 被引用被引用:6
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究中以製程簡單、成本低廉的熔膠凝膠法製備氧化鋅還原氧化石墨烯複合薄膜,並比較溶膠凝膠法製備的氧化鋅薄膜元件應用,針對氧化鋅還原氧化石墨烯複合薄膜做材料分析,可以得知還原氧化石墨烯粉末成功複合。另外利用水熱合成法於氧化鋅薄膜垂直成長氧化鋅奈米線。在上述的樣品表面以奇異筆做為光阻劑作用,塗畫出I字形狀圖案,達到試片圖案化的目的,因為以銀膠作為電極,圖案化具有改善電極間距及材料與電極之間接觸面積的問題,後續進一步在試片表面進行雷射雕刻(10640nm),對於元件應用具有表面修飾的效果。最後將樣品進行材料晶體分析,包含SEM、EDS、XRD、XPS、PL、Raman及TEM。
在元件應用方面,以複合薄膜及奈米線結構,對其進行光感測(Green、Blue & UV-LED)、氣體感測(EtOH、IPA、DMK、MeOH & Tol)及濕度感測(RH 35%~95%)。結果顯示氧化鋅薄膜經圖案化,可以達到提高光感測響應值的作用;複合薄膜相比氧化鋅薄膜,則具有增加光感測、氣體感測及濕度感測響應值等趨勢;以氧化鋅奈米線對其圖案化且雷射雕刻後,圖案化可以增加光感測性質,雷射雕刻則可以改善材料中缺陷比,進而增加氣體感測及濕度感測的效果。

In this study, the zinc oxide-reduced graphene oxide (ZnO-rGO) nanocomposite thin film was prepared by a sol-gel method with simple process and low cost, and the zinc oxide film component prepared by the sol-gel method was compared. According to the material analysis of the ZnO-rGO thin film, it can be known that the rGO powder is successfully compounded. In addition, the hydrothermal synthesis method is used to vertically grow a ZnO nanowire on the ZnO thin film. On the surface of the above sample, a marker pen is used as a photoresist to paint an I-shaped pattern to achieve the purpose of patterning the test piece. Because colloidal silver is used as an electrode, patterning has problems of improving the electrode spacing and the contact area between the material and the electrode. Further laser engraving (10640 nm) on the surface of the material has the effect of surface modification for component applications. Finally, the samples were subjected to material crystal analysis including SEM, EDS, XRD, XPS, PL, Raman and TEM.
For component applications, photo-sensing (Green, Blue & UV-LED), gas sensing (ethanol, isopropanol, acetone, methanol & Toluene) and humidity sensing (RH 35%~95%) with composite thin film and nanowire structure. The results show that the ZnO film can be patterned to improve the light sensing response value. Compared with the ZnO film, the composite film has the trend of increasing light sensing, gas sensing and humidity sensing response. After the nanowire is patterned and laser-engraved, patterning can increase the light sensing property, and laser engraving can improve the defect ratio in the material, thereby increasing the effect of gas sensing and humidity sensing.

目錄
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 x
第一章 序論 1
1.1 前言 1
1.2 氧化鋅(ZnO)材料介紹 2
1.2.1 氧化鋅介紹 2
1.2.2 氧化鋅製備 3
1.2.3 氧化鋅之發光機制 4
1.2.4 氧化鋅材料複合之影響 5
1.3 還原氧化石墨烯(Reduced Graphene Oxide)材料 6
1.4 半導體感測器簡介 7
1.4.1 金屬氧化物半導體(MOS)氣體感測器之發展 7
1.4.2 半導體材料表面氣體吸附機制 8
1.4.3 半導體材料氧化鋅表面氧氣吸附作用 10
1.4.4 半導體材料氧化鋅光感測器 13
第二章 文獻回顧 16
2.1 一維奈米材料製程方法 16
2.1.1 氣-固法(Vapor-Solid, VS) 16
2.1.2 氣-液-固法(Vapor-Liquid-Solid, VLS) 17
2.1.3 化學氣相沉積法(Chemical Vapor Deposition) 18
2.1.4 水熱合成法(Hydrothermail method) 19
2.2 溶膠-凝膠法(Sol-Gel) 21
2.2.1 旋轉塗佈法(Spin Coating) 23
第三章 儀器簡介 24
3.1 分析儀器 24
3.1.1 掃描式電子顯微鏡 (Scanning electrons microscope) 24
3.1.2 X光繞射分析儀 (XRD) 27
3.1.3 微光激發光譜儀 (Micro-PL Spectrometer) 28
3.1.4 高解析場發射掃描穿透式電子顯微鏡 (HR-TEM) 30
3.1.5 化學分析電子光譜儀(ESCA)-XPS 31
3.2 製程儀器 32
3.2.1 雷射雕刻機 32
3.3 量測儀器 33
3.3.1 Keithley-4200參數分析儀 33
第四章 實驗方法與步驟 34
4.1 實驗流程與架構 34
4.2 實驗藥品介紹 35
4.2.1 溶膠-凝膠法(Sol-Gel)製備薄膜之材料 35
4.2.2 水熱合成法製備氧化鋅奈米線之材料 35
4.3 製程方法 36
4.3.1 基板準備 36
4.3.2 溶膠-凝膠法(Sol-Gel)製備薄膜 36
4.3.3 水熱法成長氧化鋅奈米線 38
4.3.4 製備試片圖案化(pattern) 39
4.3.5 雷射雕刻薄膜 41
第五章 材料特性分析 42
5.1 SEM表面形貌分析 42
5.1.1 氧化鋅薄膜(ZnO film) 42
5.1.2 氧化鋅還原氧化石墨烯複合薄膜(ZnO-rGO film) 44
5.1.3 氧化鋅奈米線(ZnO NWs) 46
5.2 XRD材料晶向分析 51
5.2.1 氧化鋅薄膜(ZnO film) 51
5.2.2 氧化鋅還原氧化石墨烯複合薄膜(ZnO-rGO film) 52
5.2.1 氧化鋅奈米線(ZnO NWs)圖案化(pattern)之雷射雕刻 53
5.3 Raman分析 55
5.4 PL光學性值分析 57
5.4.1 氧化鋅奈米線(ZnO NWs)圖案化(pattern)之雷射雕刻 57
5.5 TEM分析 59
5.5.1 氧化鋅奈米線(ZnO NWs) 59
5.5.2 氧化鋅奈米線(ZnO NWs)圖案化(pattern)之雷射雕刻 61
第六章 元件特性量測 63
6.1 光感測器(Photo detector) 63
6.1.1 氧化鋅薄膜(ZnO film) 65
6.1.2 氧化鋅還原氧化石墨烯複合薄膜(ZnO-rGO film) 73
6.1.3 氧化鋅奈米線(ZnO NWs) 77
6.2 氣體感測器(Gas sensor) 80
6.2.1 氧化鋅奈米線(ZnO NWs)圖案化(pattern)工作溫度 81
6.2.2 氧化鋅還原氧化石墨烯複合薄膜(ZnO-rGO film) 91
6.3 濕度感測器(Humidity sensor) 93
6.3.1 氧化鋅奈米線(ZnO NWs)圖案化(pattern)濕度感測 94
6.3.2 氧化鋅還原氧化石墨烯複合薄膜(ZnO-rGO film) 96
第七章 結論與未來展望 97
7.1 結論 97
7.2 未來展望 99
參考文獻 100


[1] 奈米材料,2019, https://zh.wikipedia.org/wiki/%E7%BA%B3%E7%B1%B3%E6% 9D%90%E6%96%99
[2] Zinc Oxide. 2019. https://zh.wikipedia.org/wiki/%E6%B0%A7%E5%8C%96%E9 %8B%85
[3] 許安迪。2010。以水熱法製備氧化鋅奈米線與銀奈米顆粒之研究。碩士論文。國立臺南大學電機工程研究所。
[4] Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. (1998). “Hiraga.Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization. ”Journal of Applied Physics. 87[7]. 3912-3918.
[5] 王良凱。2016。以低溫水熱法合成鉀摻雜氧化鋅奈米線之製程技術與其電子元件應用。碩士論文。國立臺南大學電機工程研究所。
[6] 趙偉迪。2009。氧化鋅奈米線應用於發光二極體之研製。碩士論文。國立台灣師範大學機電科技研究所。
[7] 高義典。2013。以Hotwire系統輔助LPCVD法製程鈦/銅摻雜氧化鋅奈米柱之研究。碩士論文。國立臺南大學電機工程研究所。
[8] K. Vanheusden , W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt. 1996. “Mechanisms behind green photoluminescence in ZnO phosphor powders”, Journal of Applied Physics.
[9] B. Lin and Z. Fu. 2001. “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Applied Physics Letters
[10] 還原氧化石墨烯。2019。https://kknews.cc/zh-tw/science/b85lzmn.html

[11] Xiayang Yu, Jian Xu, Huanming Lu, Gang Fang. 2017. “Sol-gel derived Al-doped zinc oxide - Reduced graphene oxide nanocomposite thin films”, Journal of Alloys and Compounds, 699. 79-86.
[12] 半導體感測器。2019。https://www.itsfun.com.tw/%E5%8D%8A%E5%B0%8E%E9% AB%94%E6%84%9F%E6%B8%AC%E5%99%A8/wiki-6246736
[13] 方崇丞。2017。以低溫水熱法合成鈰摻雜氧化鋅奈米線之。碩士論文。國立臺南大學電機工程研究所。
[14] 蕭特基勢壘。2019。https://zh.wikipedia.org/wiki/%E6%AD%90%E5%A7%86%E6% 8E%A5%E8%A7%B8
[15] Electron affinity, 2019, https://zh.wikipedia.org/wiki/%E7%94%B5%E5%AD%90 %E4%BA%B2%E5%90%88%E8%83%BD#cite_note-Compendiumof-1
[16] 鄭博宇。2016。氧化鋅奈米線摻雜鈉之P-Type研究。碩士論文。國立臺南大學電機工程研究所。
[17] S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D.S. Presicce, A.M. Taurino. 2003. “Solid state gas sensors state of the art and future activities,” Journal Of Optoelectronics And Advanced Materials, 5(5). 1335-1348.
[18] 許嘉豪。2009。碳對氧化鎵薄膜氣體感測器感測特性之影響。碩士論文。國立成功大學化學工程學系研究所。
[19] C. L. Hsu, Y. D. Gao, Y. S. Chen, T. J. Hsueh. 2014. “Vertical Ti doped ZnO nanorods based on ethanol gas sensor preparedon glass by furnace system with hotwire assistance,” Sensors and Actuators B, 192. 550-557.
[20] 蘇奕龍。2014。硫摻雜氧化鋅奈米線合成於軟性PET基板成長之壓電元件研究。碩士論文。國立臺南大學電機工程研究所。


[21] C. L. Hsu, H. H. Li, and T. J. Hsueh. 2013. “Water- and Humidity-Enhanced UV Detector by Using p-Type La-Doped ZnO Nanowires on Flexible Polyimide Substrate,” RCS Applied Materials and Interfaces , 5(21). 11142-11151.
[22] 普朗克常數。2019。https://zh.wikipedia.org/wiki/%E6%99%AE%E6%9C% 97%E5%85%8B%E5%B8%B8%E6%95%B0
[23] Cheng-Liang Hsu, Hsin-Yu Wu, Chung-Cheng Fang, and Sheng-Po Chang, 2018, “Solution-Processed UV and Visible Photodetectors Based on Y‑Doped ZnO Nanowires with TiO2 Nanosheets and Au Nanoparticles”, ACS Applied Energy Materials Article, 1, 5, 2087-2095
[24] M.R. Alenezi, A.S. Alshammari, K.D.G.I. Jayawardena, M.J. Bellatis, S.J. Henley, S.R.P. Silva. 2013. “Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensors,” Journal Of Physical Chemistry C, 117(34). 17850-17858.
[25] Cheng-Liang Hsu, Yu-Che Wang, 2018, “Solution-Processed UV/Visible Photodetectors Based on Few p-n NiO/ZnO Nanowires with Pd Nanoparticles”,
[26] 低維奈米材料。2019。https://scitechvista.nat.gov.tw/c/s93r.htm
[27] B. Lewis. 1974. “The growth of crystals of low supersaturation: I. Theory,” Journal of Crystal Growth, 21(1), 29-39.
[28] S. R. Hejazi, H. R. Madaah Hosseini, M. Sasani Ghamsari. (2008).“The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism.”Journal of Alloys and Compounds. 455. 353-357.
[29] D.I. Suh , C.C. Byeon and C.L. Lee. 2010. “Synthesis and optical characterization of vertically grown ZnO nanowires in high crystallinity through vapor–liquid–solid growth mechanism”, Applied Surface Science .
[30] 水熱法。2019。https://baike.baidu.com/item/%E6%B0%B4%E7%83%AD%E6%B3 %95
[31] 水熱法。2019。https://zh.wikipedia.org/wiki/%E6%B0%B4%E7%83%AD%E5%90% 88%E6%88%90%E6%B3%95
[32] Sol-Gel. 2019. https://zh.wikipedia.org/wiki/%E6%BA%B6%E8%86%A0%E5%87%
9D%E8%86%A0
[33] Sol-Gel. 2019. https://www.itsfun.com.tw/%E6%BA%B6%E8%86%A0%E5%87%
9D%E8%86%A0%E6%B3%95/wiki-7406773-2011953
[34] 何葦澤。2014。溶膠配製及膠體特性分析與溶膠凝膠法製備氧化矽薄膜。碩士論文。指導教授,駱榮富。
[35] 國立成功大學微奈米中心。2019。儀器設備介紹。http://cmnst.ncku.edu.tw/p/ 412-1006-13238.php?Lang=zh-tw
[36] EDS. 2019. http://www.eaglabs.com.tw/eds.html.
[37] EDS. 2019. https://tw.answers.yahoo.com/question/index?qid=20051224000014 KK00540
[38] EDS. 2019. https://www.garefully.com/eds.html
[39] Raman. 2019. http://www.teo.com.tw/brand.asp?lv=0&id=70
[40] Raman. 2019. https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85 %89%E8%AD%9C%E5%AD%B8
[41] 國立成功大學貴重儀器中心。2019。儀器設備介紹。http://idc.ord.ncku.edu.tw
[42] 桌上雷射雕刻機。2019。儀器設備介紹。https://tw.flux3dp.com/beambox/
[43] Xiayang Yu, Jian Xu, Huanming Lu, Gang Fang, 2017, “ Sol-gel derived Al-doped zinc oxide - Reduced graphene oxide nanocomposite thin films”, Journal of Alloys and Compounds, 699, 79-86.

[44] 張均豪。2008。以溶膠凝膠法製備氧化鋅奈米結構於半導體型氣體感測器之應用。碩士論文。國立台灣師範大學機電科技學系研究所。
[45] Abhisek Chakrabortya, Antonio Agrestib, Roberto Pizzoferrato, Fabio De Matteis, Andrea Orsini, Pier Gianni Medaglia, 2017, “Study of structural and optical properties of low temperature photo-activated ZnO-rGO composite thin film”, Materials Research Bulletin, 91, 227–231.
[46] Haidong Gu, Lei Yu, Juan Wang, Jian Yao, Feng Chen, 2017, “A sol-gel preparation of ZnO/graphene composite with enhanced electronic properties”, Materials Letters, 196, 168–171.
[47] Jinghai Yang, Xiaoting Zhao, Xiaonan Shan, Hougang Fan, Lili Yang, Yongjun Zhang, Xiuyan Li, 2013, “Blue-shift of UV emission in ZnO/graphene composites”, Journal of Alloys and Compounds, 556, 1–5.
[48] Lijun Qi, Lingmin Yu, Zongyuan Liu, Fen Guo, Yong qiang Gu, Xinhui Fan, 2018, “An enhanced optoelectronic NO2 gas sensors based on direct growth ZnO nanowalls in situ on porous rGO”, Journal of Alloys and Compounds, 749, 244-249.
[49] Bing Xue, Yingquan Zou, 2018, “High photocatalytic activity of ZnO–graphene composite”, Journal of Colloid and Interface Science, 529, 306–313.
[50] Sunil Meti, Mohammad R. Rahman, Md. Imteyaz Ahmad, K. Udaya Bhat, 2018, “Chemical free synthesis of graphene oxide in the preparation of reduced graphene oxide-zinc oxide nanocomposite with improved photocatalytic properties”, Applied Surface Science, 451, 67–75.
[51] Mahdi Hajimazdarani, Nima Naderi⁎, Benyamin Yarmand, Alireza Kolahi, Parvaneh Sangpour, 2018, “Enhanced optical properties of ZnS–rGO nanocomposites for ultraviolet detection applications”, Ceramics International, 44, 17878–17884.

[52] High Surface Area Reduced Graphene Oxide。2019。材料來源。https://graphene-supermarket .com/High-Surface-Area-Reduced-Graphene-Oxide.html
[53] 蘇威年。2012。石墨烯/氧化石墨烯層間限制空間成長奈米結構之電化學儲能材料。行政院國家科學委員會補助專題研究計畫。NSC 99-2218-E-011-021-MY2。
[54] Cheng-Liang Hsu, Li-Fan Chang, Ting-Jen Hsueh, 2017, “Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature”, Sensors & Actuators: B. Chemical.
[55] Cheng-Liang Hsu, Yen-Cheng Chuo, Liang-Wei Hsu, Yen-Liang Pan, and Yi-Hung Liu, 2019, “UV and Visible Light Induced Photocatalytic Degradation on p–n Cu2O/ZnO Nanowires Decorated with Au–Pd Alloy Nanoparticles”, Adv. Mater. Interfaces, 1801744.
[56] 光譜光視效率。2019。https://zh.wikipedia.org/wiki/%E5%85%89%E5%BA%A6 %E5%87%BD%E6%95%B0
[57] 薄膜電阻。2019。https://zh.wikipedia.org/wiki/%E8%96%84%E8%86%9C%E7% 94%B5%E9%98%BB
[58] Donaid A. Neaman, 2015, “Semiconductor Physics and Devices:Basic Principles, 4e”, ISBN:978-986-157-825-5
[59] Meng-Chu Chen, Cheng-Liang Hsu, Ting-Jen Hsuehm, 2014, “Fabrication of Humidity Sensor Basedm on Bilayer Graphene”, IEEE ELECTRON DEVICE LETTERS, VOL. 35, NO. 5.
[60] WangKang, XuJimeng, WangXitao, 2016, “The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites”, Applied Surface Science, Part A, 270-275.
[61] H. McMurdie et al., "JCPDS—International centre for diffraction data task group on cell parameter refinement," Powder Diffr, vol.1, pp. 66-76, 1986.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊