(18.204.2.190) 您好!臺灣時間:2021/04/19 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉翰揚
研究生(外文):Yeh, Han-Yang
論文名稱:冬青葉馬尾藻(Sargassum ilicifolium)人工育苗技術研究
論文名稱(外文):Research of the artificial seeding technique of Sargassum ilicifolium
指導教授:李孟洲李孟洲引用關係
指導教授(外文):Lee, Meng-Chou
口試委員:翁韶蓮徐振豐林綉美張睿昇李孟洲
口試委員(外文):Wong, Saou-LienShyu, Jeng-FengLin, Showe-MeiChang, Jui-ShengLee, Meng-Chou
口試日期:2019-01-15
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:108
中文關鍵詞:冬青葉馬尾藻有性生殖生殖托孢子體固著器
外文關鍵詞:Sargassum ilicifoliumSexual reproductionReceptacleSporophyteHoldfast
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以冬青葉馬尾藻 (Sargassum ilicifolum) 為試驗藻種,該藻種為臺灣東北部海域海藻族群數量較多的褐藻,是水生生物最佳棲地與食物來源。近年來的研究發現藻體經加工及萃取後,可獲得多種生物活性成分,大幅提高冬青葉馬尾藻之應用價值。本研究於臺灣東北部沿岸觀察冬青葉馬尾藻之生長棲地、藻體生長進程及棲地水質條件,接著再以人工調控溫度及照度,探討影響卵的釋放、精子的釋放、受精率、萌發率及幼孢子體生長等階段的環境因子,建立人工海藻育苗技術,以提供產業穩定的海藻來源,盼能同時降低人工野外採集對環境的衝擊。

本研究於 2016 年 3 月在基隆市中正區海濱觀察到冬青葉馬尾藻的出現,隨著海溫上升,每日光照週期日益增加,藻體亦持續成長。於 7 月開始,藻體生殖托成熟,開始釋放精子與卵。本研究除了以藻體外部形態特徵作為分類依據外,並以 1,5-二磷酸核酮糖羧化酶/加氧酶 (Ribulose-1,5-bisphosphate carboxylase / oxygenase spacer, RuBisCO) 及內轉錄間隔-2 (Internal transcribed spacer II, ITS- 2) 基因進行基因序列比對。

冬青葉馬尾藻雌生殖托培養在25℃ 時有最大排卵量,平均每個雌生殖托釋放 73.03 ± 10.94 個卵,而照度對雌生殖托釋放卵則無顯著影響。另一方面,冬青葉馬尾藻雄生殖托培養於照度100 μmol photons m-2 s-1 時有最大排精量,並可於精巢周圍發現精子數為 29.33 ± 1.7 個 / 6.72 × 104 μm2,而溫度對雄生殖托釋放精子則無顯著影響。另外,將雌雄生殖托共同培養在溫度25℃ 之培養皿進行受精作用實驗時,最佳的受精率達84.74 ± 6.59 %,而照度對受精作用則無顯著影響。

冬青葉馬尾藻幼孢子體培養在溫度 18℃ 及照度100 μmol photons m-2 s-1時,孢子體長度及存活率最佳,分別為5.58 ± 0.25 mm 及 74.33 ± 4.51%。孢子體培養於照度 50 μmol photons m-2 s-1 及溫度 15℃ 時,孢子體固著率以培養在濾綿、棉繩及尼龍繩組為最佳,孢子體固著率分別為 86.33 ± 2.52、84.33 ± 1.53 及 82.00 ± 2.00% (p > 0.05)。孢子體培養於溫度 25℃ 時,培養在帆布及尼龍繩組之孢子體長度最長,分別達 2.53 ± 0.05 及 2.44 ± 0.06 mm (p > 0.05)。另一方面,冬青葉馬尾藻幼孢子體培養於溫度20℃ 及照度 20 μmol photons m-2 s-1 時,孢子體固著率以培養在濾綿及棉繩組為最佳,孢子體固著率分別為 89.00 ± 1.00 及82.67 ± 1.53 % (p > 0.05)。培養在照度 100 μmol photons m-2 s-1之帆布組的孢子體長度最長,可達2.34 ± 0.07 mm。


This study focused on the S. ilicifolium (Pheaophyta), which was the dominant species in northeast of Taiwan, provided the food and habitat for aquatic organisms. Recently, researchers in recent years had also discovered that after processing and extraction, various bioactive ingredients could be obtained from S. ilicifolium, therefore, increases its economic value. This study first investigated the habitat, growth performance of S. ilicifolium and water quality in the yield. Next, explored the best condition of environmental factor, includes temperature and light intensity on eggs and sperms release, fertilization rate, survival rate as well as zygotes development. This technique could provide the macroalgae product for the industry, even decreased the environmental impact of over exploitation.

In the beginning, observed daily from the seashore of Zhong-Zheng Dist., Keelung City in March 2016. Following the variation of photoperiod increasingly (light more), S. ilicifolium growth continuously. Until July, algae getting mature and had the probability to release eggs and sperms. Furthermore, in order to confirm the identity of S. ilicifolium. This study used not only morphology also genetic screening included Riulose-1, 5-bisphosphate carboxylase/oxygenase spacer, RuBisCO and Internal transcribed spacer II, ITS-2 to distinguish.

The result showed that 25℃ obtained the maximum egg release with a value 73.03 ± 10.94 while various light intensity had no significant effects. In the sperm release, light intensity with 100 μmol photons m-2 s-1 had the best condition on with a value of 29.33 ± 1.7 pcs / 6.72 × 104 μm2 in the second day. In addition, 25℃ temperature was the optimal condition on fertilization rate with 84.74 ± 6.59 % value. Conversely, light intensity had no significant impact.

All tested temperatures (18, 22 and 26℃) were best at 100 µmol photons m-2 s-1 with a survival rate value of 74.33 ± 4.51, 1.67 ± 0.58, and 5.33 ± 6.11 % and growth performance of 5.58 ± 0.25, 3.43 ± 0.17, 3.61 ± 0.08 mm, respectively. The best binding rate was observed in 15℃ temperature cultured in the filter, cotton rope and nylon rope was 86.33 ± 2.52、84.33 ± 1.53 and 82.00 ± 2.00 % respectively. Light intensity showed no significant differences. In the different light intensity, 20 μmol photons m-2 s-1 cultured in the filter and cotton rope was found best with 89.00 ± 1.00 and 82.67 ± 1.53 % values, respectively. In terms of growth performance, maximal value was found in 50 μmol photons m-2 s-1, cultured on canvas and nylon rope under 25℃ about 2.53 ± 0.05 and 2.44 ± 0.06 mm respectively. On the other hand, 20℃, cultured at canvass with 100 μmol photons m-2 s-1 had the optimal condition for growth performance about 2.34 ± 0.07 mm.
謝辭 I
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 X
附錄目錄 XI
第一章 前言 1
第二章 文獻回顧 2
1. 冬青葉馬尾藻之形態特徵與命名 2
2. 冬青葉馬尾藻之生活史 3
3. 冬青葉馬尾藻之分子分類研究 4
4. 馬尾藻屬之生長條件 6
4.1 照度 6
4.2 溫度 6
4.3 營養需求 7
5. 馬尾藻屬之人工培養技術 8
5.1 無性生殖 8
5.2 有性生殖 8
6. 馬尾藻屬在生態及產業之應用 8
第三章 材料與方法 11
1. 實驗設計 11
2. 冬青馬尾藻天然海域族群生長表現調查 11
2.1 冬青葉馬尾藻生長觀察 11
2.2 冬青葉馬尾藻藻體生長表現 11
2.3 海水溫度資料蒐集 11
3. 藻體形態觀察 12
4. 藻體基因序列比對 12
4.1 DNA 萃取 (DNA Extraction) 12
4.2 基因擴增與定序 (Gene Amplification and Sequencing)12
4.3 電泳分析與定序 (Electrophoresis analysis and Sequencing) 13
5. 基因比對 (Blast) 與親緣關係分析 (Phylogenetic Analysis) 13
6. 藻體採集與培養 14
6.1 藻體前處理 14
6.2 藻體蓄養 14
6.3 馬尾藻生殖托之觀察與蒐集 14
7. 溫度及照度對雌生殖托釋放卵數之影響 14
7.1 溫度對卵釋放之試驗 14
7.2 照度對卵釋放之試驗 15
8. 溫度及照度對雄生殖托釋放精子數之影響 15
8.1 溫度對精子釋放之試驗 15
8.2 照度對精子釋放之試驗 15
9. 溫度及照度對受精率之影響 15
9.1 溫度對馬尾藻受精作用之試驗 15
9.2 照度對馬尾藻受精作用之試驗 16
10. 溫度及照度對萌發作用之影響 16
11. 固著基質、溫度及照度對幼孢子體成長之影響 16
11.1 固著基質製作 16
11.2 冬青葉馬尾藻結合子搜集 17
11.3 溫度及固著基質對馬尾藻幼孢子體發育之影響 17
11.4 照度及固著基質對馬尾藻幼孢子體發育之影響 17
12. 數據分析 18
第四章 結果 19
1. 冬青馬尾藻天然海域族群生長表現調查 19
1.1 孢子體生長特徵描述 19
1.2 冬青葉馬尾藻生殖托之觀察 20
1.3 藻體重量變化 20
1.4 藻體長度變化 21
2. 馬尾藻基因序列比對 21
2.1 Ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO 22
2.2 Internal transcribed spacer 2, ITS2 22
3. 溫度及照度對雌生殖托釋放卵數之影響 23
3.1 雌生殖托釋放卵的過程觀察 23
3.2 溫度對卵釋放之影響 23
3.3 照度對卵釋放之影響 24
4. 溫度及照度對雄生殖托釋放精子數之影響 24
4.1 雄生殖托釋放精子的過程觀察 24
4.2 溫度對精子每日釋放數量之影響 24
4.3 照度對精子每日釋放數量之影響 25
5. 溫度及照度對受精作用之影響 25
5.1 受精卵的發育過程觀察 25
5.2 溫度對受精作用之影響 25
5.3 照度對受精作用之影響 26
6. 溫度及照度對萌發作用之影響 27
6.1 結合子的發育過程觀察 27
6.2 溫度及照度對結合子的發育之影響 27
7. 固著基質、溫度及照度對幼孢子體成長之影響 31
7.1 基質與溫度對結合子的萌發及固著作用之影響 31
7.2 基質與照度對結合子的萌發及固著作用之影響 34
第五章 討論 39
1. 冬青馬尾藻天然海域族群生長表現調查 39
2. 冬青葉馬尾藻形態觀察 40
3. 馬尾藻基因序列比對 41
4. 溫度及照度對雌生殖托釋放卵數之影響 42
4.1 溫度對卵釋放之影響 42
4.2 照度對卵釋放之影響 43
5. 溫度及照度對雄生殖托釋放精子數之影響 43
6. 溫度及照度對受精作用之影響 43
6.1 雌雄生殖托性別比例對受精率的影響 43
6.2 溫度對受精作用之影響 44
6.3 照度對受精作用之影響 44
7. 溫度及照度對萌發作用之影響 45
8. 固著基質、溫度及照度對幼孢子體生長之影響 47
第六章 結論 50
第七章 參考文獻 51
作者簡介 107
大野正夫。2004。有用海藻誌-海藻の資源開発と利用に向けて。内田老鶴圃。303 頁。
王瑋龍、劉少倫、李宗軒。2015。東沙海藻生態圖鑑。海洋國家公園管理處。143 頁。
江永棉、王瑋龍、黃淑芳,1990。臺灣海藻簡介。臺灣省立博物館。73 頁。
宋彥霆。2017。臺灣東北角基隆東岸外來種褐藻-羊栖菜族群生長研究。國立臺灣海洋大學海洋生物研究所碩士論文。104 頁。
林文謙。2014。臺灣產海洋紅藻海膜藻屬(海膜藻科,紅藻門)分子親源關係與分類研究。國立臺灣海洋大學海洋生物研究所碩士論文。116 頁。
周立進。2009。中國半葉馬尾藻人工繁養殖。國立澎湖科技大學海洋創意產業研究所碩士論文。93 頁。
徐振豐、張睿昇、周立進。2012。澎湖的海藻與生活應用。澎湖縣政府文化局。101 頁。
陳俊強。2014。厚葉馬尾藻 (Sargassum crassifolium) 種苗培育之建立。國立屏東科技大學水產養殖研究所碩士論文。102頁。
翁韶蓮、高良華、張欽泉、鄭文騰。2013。重緣葉馬尾藻熱水萃取物對於點帶石斑成長、免疫及抗病能力之影響。臺灣水產學會刊40 (1)。
張欽泉、高良華、鄭文騰,2013a。飼料添加重緣葉馬尾藻熱水萃取物對白蝦免疫及抗溶藻弧菌能力之影響。臺灣水產學會刊40 (1)。
張欽泉、Franklin Saúl Martínez Toscano、鄭文騰。2013b。飼料添加粉葉馬尾藻酸性溶液萃取物增強草蝦免疫反應及抗病能力。臺灣水產學會刊40 (1)。
張婉純。1998。龍鬚菜 (Gracilaria tenuistipitata)(Gigartinales, Rhodophyta) 高溫下游離輔胺酸 (Free proline) 代謝。國立中山大學海洋生物研究所碩士論文。101頁。
黃淑芳。2003。臺灣東北角海藻圖錄。國立臺灣博物館。114 頁。
楊海寧。1994。臺灣產馬尾藻 (Sargassum) 的分類研究。國立臺灣大學海洋研究所博士論文。212 頁。
趙淑江。2014。海洋藻類生態學。海洋出版社。1-245 頁。
蔡娟娟。2000。營養鹽與溫度對墾丁南灣大型藻生物量之影響。國立中山大學海洋生物研究所碩士論文。95 頁。
錢樹本、劉東艷、孫軍。2005。海藻學。中國海洋大學出版社,580-699 頁。
歐澤奎、劉東超、謝恩義、吳啟蕃。2017。全緣馬尾藻 (Sargassum integerrimum) 生殖細胞排放規率及人工促排條件。海洋與湖沼48 (1)。
Agardh, C. A., 1820. Species algarum rite cognitae, cum synonymis, differentiis specificis et descriptionibus succinctis. Volumen primum. Pars prima pp. [i-iv], [1]-168.
Agardh, J. G., 1848. Species genera et ordines algarum, seu descriptiones succinctae specierum, generum et ordinum, quibus algarum regnum constituitur. Algas fucoideas complectens. vol. 1. Gleerup, C. W. K., Lund, 363 pp.
Agardh, J. G., 1889. Species Sargassorum Australiae descriptae et dispositae. Öfversigt af Kongl. Svenska Vetenskaps-Adademiens Handlingar 23(3): 1–133.
Arenas, F., and Fernandez, C., 1998. Ecology of Sargassam muticum (Phaeophyta) on the North Coast of Spain III. Reproductive ecology. Botanica Marina 41:209-16.
Ateweberhan, M., 2005. Seasonal dynamics of coral reef algae in the southern Red Sea: functional group and population ecology. PhD thesis, University of Groningen.
Ateweberhan, M., Bruggemann, J.H., and Breeman, A. H., 2005. Seasonal dynamics of Sargassum ilicifolium (Phaeophyta) on a shallow reef flat in the southern Red Sea (Eritrea). Marine Ecology - Progress Series 292, 159-171.
Balasubramanian, G., Sudhakaran, R., Musthaq, S. S., Sarathi, M., Hamee, A. S., 2006. Studies on the inaclivation of white spot syndrome virus of shrimp by physical and chemical treatments, and seaweed extracts tested in marine and freshwater animal models. Journal of Fish Diseases 29, 569-572.
Bénédicte, C., Thomas, W., Reddy, C. R. K., 2018. Protocols for Macroalgae Research. CRC Press, London pp. 4-10.
Blackman, E., 1900. The primitive algae and the Flagellat. Annals of Botany. 14:647-688.
Bold, H. C., Wynne, M. J., 1978. Intorduction to the algae: Structure and Reproduction. Prentics Hall of India, pp. 307-389.
Brawley, S., 1992. Fertilization in natural populations of the dioecious brown alga Fucus ceranoides and the importance of the polyspermy block. Marine Biology 113(1), 145—157.
Camacho, O., Mattio, L., Draisma, S., Fredericq, S., Diaz-Pulido, G., 2015. Morphological and molecular assessment of Sargassum (Fucales, Phaeophyceae) from Caribbean Colombia, including the proposal of Sargassum giganteum sp. nov., Sargassum schnetteri comB nov. and Sargassum section Cladophyllum sect. nov. Systematics and Biodiversity 13, 105-130.
Cavalier-Smith, T., 1995. Zooflagellate phylogeny and classification. Cytology 37, 1010–1029.
Chadefaud, M., 1950. Observations cytologiques sur la Phéophycée d’eau douce: Heribaudiella fluviatilis (Aresch.) Sved. Bulletin de la Société Botanique de France 97, 198–199.
Chapman, V. J., Chapman, D. J., 1962. The Algae. Springer. pp, 183-219.
Chu, S. H., Zhang, Q. S., Liu, S. K., Tang, Y. Z., Zhang, S. B., Lu, Z. C., Yu, Y. Q., 2012. Tolerance of Sargassum thunbergii germlings to thermal, osmotic and desiccation stress. Aquatic Botany 96,1-6.
Choi, C. G., Kim, H. G., Sohn, C. H., 2003. Transplantation of young fronds of Sargassum horneri for construction of seaweed beds. Journal of the Korean Society of Fisheries Technology 36,469–473.
Choi, H. G., Lee, K. H., Yoo, H. I., Kang, P. J., Kim, Y. S., Nam, K. W., 2008. Physiological differences in the growth of Sargassum horneri between the germling and adult stages. Journal of Applied Phycology 20, 279 – 285.
Critchley, A. T., 1981. Ecological studies of Sargassum muticum (Yendo) Fensholt. Ph. D. Thesis, Portsmouth Polytechnic 179-195.
de Wreede, R. E., 1980. The effect of some physical and bio-logical factors on a Sargassum muticum community and their implication for commercial utilization. In: (I. A, Ab- bott, M. S. Foster and L. F. Ecklund, eds) Pacific Seaweed Aquaculture, Symposiium of PASGAP pp. 32—34.
de Sousa, Torres, M. R., Pessoa, C., de Moraes, M. O., Filho, F. D. R., Alves, A. P. N. N., 2007. In vivo growth-inhibition of Sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydrate Polymers 69 (1), 7-13.
Fritsch, F. E., 1945. The structure and reproduction of the algae, Vol. П. Cambridge University Press, Cambridge, pp. 226-230.
Forters, M. D., Loning, K., 1980. Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgol. Wiss. Meeresunters. Vol. 34, pp. 15-29.
Gianni, F., Bartolini, F., Airoldi, L., Ballesteros, E., Francour, P., Guidetti, P., 2013. Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of marine protected areas. Adv. Oceanogr. Limnol 4, 83–101.
Gorham, J., Lewey, S. A., 1984. Pigment composition and photosynthesis in Sargassum muticum. Marine Biology 80(1), 109-115.
Guiry, M.D., Guiry, G. M., 2018. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.
Guiry M.D., Guiry, G. M., 2016. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.
Graham L. E., Graham J. M., and Wilcox L. W., 2009. Algae, Second Edition. Pearson Benjamin Cummings, San Francisco, California pp. 306.
Hales, J. M., Fletcher, R. L., 1989. Studies on the Recently Introduced Brown Alga Sargassum muticum (Yendo) Fensholt. Botanica Marina 32, 167-176.
Hales, J. M. Fletcher, R. L., 1990. Studies on the recently introduced brown alga Sargassum muticum (Yendo) Fensholt. V. Receptacle initiation and growth, and gamete release in laboratory culture. Botanica Marina 33, 241–249.
Helmuth, B. S. T., Hofmann, G. E., 2001. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biology Bulletin 201, 374–384.
Hernandez, I., F. X. Niell., Fernandez J. A., 1994. Alkaline phosphatase activity in marine macrophytes: histochemical localization in some widespread species in southern Spain. Marine Biology 120, 501-509.
Hurd, C. L, Harrison, P. J., Bisch, K., Lobban, C. S., 2014. Seaweed ecology and physiology. Cambridge University Press, Cambridge.
Hwang, E., Park, C, Baek, J., 2006 Artificial seed production and cultivation of the edible brown alga, Sargassum fulvellum (Turner) C Agardh: Developing a new species for seaweed cultivation in Korea. Journal of Applied Phycology 18, 251-257.
Kerrison, P. D., Stanley, M. S., Hughes, A. D., 2018. Textile substrate seeding of Saccharina latissima sporophytes using a binder: An effective method for the aquaculture of kelp. Algal Research 33, 352-357.
Kilar, J. A, Hanisak, M. D., Yoshida, T., 1992. On the expression of phenotypic variability: why is Sargassum so taxonomically difficulte In Abbott, I.A (Ed.) Taxonomy of Economic Seaweeds. Vol. 3. California Sea Grant College Program, La Jolla. pp. 95–117.
Kilar, J. A, Littler, M. M., Littler, D. S., 1989. Functional–morphological relationships in Sargassum polyceratium (Phaeo-phyta): phenotypic and ontogenetic variability in apparent photosynthesis and dark respiration. Journal of Phycology 25, 713–720.
Kooistra, W. H. C. F., Stam, W. T., Olsen, J. L. and van den Hoek, C. 1992. Biogeography of Cladophoropsis membranacea (Chlorophyta) based on comparisons of nuclear rDNA ITS sequences. Journal of Phycology 28: 660–8.
Kordas, R. L., Harley, D. G., O’Connor, M. I., 2011 Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology 400, 218−226
Kumar, S., Stecher, G., Li, M., Knyaz, C, Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35,1547-15-59
Largo, D. B, Ohno, M., 1993. Constructing an artificial seaweed bed. In: Ohno M, Critchley AT (eds) Seaweed cultivation and marine ranching. Japan International Cooperation Agency pp. 113–130.
Lin, S. M., Huang, R., Ogawa, H., Liu, L. C., Wang, Y. C., Chiou, Y. S., 2017. Assessment of germling ability of the introduced marine brown alga, Sargassum horneri, in Northern Taiwan. Journal of Phycology 29(5), 2641-2649.
Linnaeus, C., 1753. Species Plantarum. Laurentius Salvius, Stockholm.
Liu, L., Heinrich, M., Myers, S., Dworjanyn, A. S., 2012. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: A phytochemical and pharmacological review. Journal of Ethnopharmacology 142, 591-619.
Liu, F., Pang, S., Gao, S., Shan, T., 2013. Intraspecifi c genetic analysis, gamete release performance, and growth of Sargassum muticum (Fucales, Phaeophyta) from China. Chinese Journal of Oceanology and Limnology 31, 1268-1275.
Lobban, S. C, 2000. Seaweed Ecology and Physiology, Cambridge University Press, The Edinburg Bulding, Cambridge pp. 359.
Maier, I., Miiller, D. G., 1986. Sexual pheromones in algae. Botanical Bulletin 170, 145-75.
Mattio, L., Payri, C, 2010. Assessment of five markers as potential barcodes for identifying Sargassum subgenus Sargassum species (Phaeophyceae, Fucales). Algologie 31(4), 467-485.
Mattio, L., Payri, C. E., 2011. 190 years of Sargassum taxonomy, facing the advent of DNA phylogenies. The Botanical Review 77 (1), 31–70.
Mattio, L., Zubia, M., Loveday, B., Crochelet. E., Duong, N., Payri, C. E., Bhagooli, R.., Bolton. J. J., 2013. Sargassum (Fucales, Phaeophyceae) in Mauritius and Réunion, western Indian Ocean: taxonomic revision and biogeography using hydrodynamic dispersal models. Phycologia 52 (6), 578–594.
Moss, B., Sheader, anna., 1973. The effect of light and temperature upon the germination and growth of Halidrys siliquosa (L.) Lyngb. (Phaeophyceae, Fucales). Phycologia. 12,63-68.
Norton, T. A., 1977. Ecological experiments with Sargassum muticum. Journal of Marine Biology 57, 33-43.
Oak, J. H., Suh, Y., Lee, I. K., 2002. Phylogenetic Relationships of Sargassum subgenus Bactrophycus (Sargassaceae, Phaeophyceae) inferred from rDNA ITS Sequences. Algae 17(4), 235-247
Patel, S., Goyal, A., 2012. The current trends and future perspectives of prebiotics research: a review. Biotech 2(2), 115-125.
Pang, S. T., Shan, Z. Zhange., Sun, J., 2008 Cultivation of the inter-tidal brown alga Hizikia fusiformis (Harvey) Okamura: mass production of zygote-derived seedlings under commercial cultivation conditions, a case study experience. Aquaculture Research 39, 1408-1415.
Paul, J. H., Catriona, L. H., 2001. Nutrient physiology of seaweeds: Application of concepts to aquaculture. Cahiers de Biologie Marine 42:71-82.
Pereira, L., 2016. Edible Seaweeds of the World. CRC Press, London pp. 244-252.
Peters, A. F., Ramírez, M. E., 2001. Molecular phylogeny of small brown algae, with special reference to the systematic position of Caepidium antarcticum (Adenocystaceae, Ectocarpales). Cryptogamie Algologie 22, 187–200.
Peng, Y., Xie E., Zheng, K., Fredimoses, M., Yang, X., Zhou, X., Wang, Y., Yang, B., Lin, X., Liu, J., Liu, Y., 2013. Nutritional and Chemical Composition and Antiviral Activity of Cultivated Seaweed Sargassum naozhouense Tseng et Lu. Marine Drugs 11, 20-32.
Phillips, N., Fredericq, S., 2000. State of the Climate: Global Climate Report for Annual 2002. NOAA National Centers for Environmental Information.
Phillips, N., 1998. Molecular phylogenetic analysis of the pan-Pacific genus Sargassum (C Agardh). Unpubl. Ph.D. diss., University of Hawaii, Honolulu, HI.
Phillips, N., 1995. Biogeography of Sargassum (Phaeophyta) in the Pacific basin. In Abbott, I. A (Ed) Taxonomy of Economic Seaweeds. Vol. V. California Sea Grant College Program. La Jolla 107–44.
Provasoli, L., 1968. Media and prospects for the cultivation of marine algae. In: Watanabe, A., and Hattori, A., eds. Cultures and collections of algae. Proceedings of the U.S.–Japan Conference, Hakone, Japan, September 1966. Japanese Society of Plant Physiology pp. 63–75.
Rahman, A., Korejo, F., Sultana, V., Ara, J., Haque, S. E., 2017. Induction of systemic resistance in cotton by the plant growth promoting rhizobacterium and seaweed against charcoal rot disease. Pakistan Journal of Botany 49, 347-353.
Rover, T., Simioni, C, Hable, W., Bouzon, Z. L., 2015. Ultrastructural and structural characterization of zygotes and zygotes during development in Sargassum cymosum (Phaeophyceae, Fucales). Protoplasma 252, 505-518.
Rosenberg, G., Ramus, J., 1982. Ecological Growth Strategies in the Seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): Photosynthesis and Antenna Composition. Marine ecology progress series 8, 233-241.
Rousseau, F., and de Reviers, B., 1999. Phylogenetic relationships within the Fucales (Phaeophyceae) based on combined partial SSU+LSU rDNA sequence. European Journal of Phycology 34, 53 - 64.
Sarah, R., Jang, K., Kim, Charles, Y., Michael, P., Ian, B., 2014. Culture of Sargassum in Korea: Techniques and Potential for Culture in the U.S. Maine Sea Grant Publications 1-17.
Sayed, O. H., Emes, M. J., Earnshaw, M. J., and Butleii, R. D., 1989. Photosynthetic responses to different varieties of wheat to high temperature. I. Effect of growth temperature on development and photosynthetic performance. Journal of Experimental Botany 40, 625 - 631.
Schiel, D. R., Foster, M. S., 2006. The population biology of large brown seaweeds: ecological consequences life histories of multiphase in dynamic coastal environments. Annual Review of Ecology, Evolution, and Systematics 37, 343–372.
Sharma, O. P., 2011. Algae. McGraw Hill Education (India) Private Limited. 72-335.
Sohn, C, 1998. The seaweed resources in Korea, in seaweed re-sources of the world (A Critchley and M. Ohno, eds.). Japanese International Cooperation Agency pp. 15-33
Stefan, G. H., Simis, Yannick. H., Marcel. B., Jukka, S., Liisa, M., 2012. Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria. Photosynthesis Research 112, 13-30.
Stiger, V., Horiguchi, T., T. Yoshida, A. W., Coleman., Masud, A. M., 2003. Phylogenetic relationships inferred from ITS-2 nrDNA comparisons within the genus Sargassum (Fucales, Phaeophyceae) from the Pacific basin, with an emphasis on the taxonomic subdivision of the genus. Phycological Research. 51, 1–10.
Sukumaran, S., Kaliaperumal, N., 2000. Oospore shedding in Sargassum wightii (Greville) J. Agardh and Tubinaria conoides (J.Agardh) Kuetzing at different environmental factors. Seaweed Res Utiln 22, 209 - 218.
Sultana, V., Tariq, S., Hira, K., Tariq, A, Ara, J., Tariq, R. M., Syed, E. H., 2018. Seaweed bio-fertilizer for the management of root rotting fungi and root knot nematodes affecting cotton crop. Pakistan Journal of Botany 50(6), 2409-2412.
Syrett, P. J., 1962. Nitrogen assimilation, In: R. A Lewin (ed.), Physiology and biochemistry of algae. Academic Press, New York pp. 171–188.
Tabaraki, R., Nateghi A, and Ahmady-Asbchin S., 2014a. Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. International biodeterioration and biodegradation 93, 145-152.
Tabaraki, R., and Nateghi A, 2014b. Multimetal biosorption modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium. Ecological Engineering 71, 197-205.
Thomas, A. D., Franclsco, L. L., Bohumil, V. O., Guillermo, D. P., Laurence, M., Alfonso, M., 2003. 1 H-NMR Study of Na Alginates Extracted from Sargassum spp. in Relation to Metal Bio-sorption. The Humana Press Inc 110(2), 75-90.
Tu, Nguyen. Van., 2014. Seaweed diversity in Vietnam, with an emphasis on the brown algal genus Sargassum. PhD thesis, Ghent University pp.199.
Turner, D., 1808. Fuci sive plantarum fucorum generi a botanicis ascriptarum icones descriptiones ethistoria. Fuci, or coloured figures and descriptions of the plants referred by botanists to the genus Fucus, vol. 1. J. and A. Arch Cornhill, London, England.
Turner, D., 1809. Fuci sive plantarum fucorum generi a botanicis ascriptarum icones descriptiones ethistoria. Fuci, or coloured figures and descriptions of the plants referred by botanists to the genus Fucus, vol. 2. J. and A. Arch Cornhill, London, England.
Turner, D., 1811. Fuci sive plantarum fucorum generi a botanicis ascriptarum icones descriptiones ethistoria. Fuci, or coloured figures and descriptions of the plants referred by botanists to the genus Fucus, vol. 3. J. and A. Arch Cornhill, London, England.
Uchida, K., 1993. The life cycle of Sargassum honeri (Phaeophyta) in laboratory culture. 29, 231-235.
Vadas, R. L., Johnson, S., Norton, T. A, 1992. Recruitment and mortality of early postsettlement stages of benthic algae. European Journal of Phycology 27, 331–351.
Wang, B., Huang, H., Xiong, H. P., Xie, E. Y., Li, Z. M., 2010. Analysis on nutrition constituents of S. naozhouense sp. nov. Food Industry Research and Development 31, 195 – 197.
White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, Academic Press. 315-322.
Peng, Y., Xie, E., Zheng, K., Fredimoses, M., Yan,g X., Zhou, X., Wang, Y., Yang, B, Lin, X., Liu, J., Liu, Y., 2013. Nutritional and chemical composition and antiviral activity of cultivated seaweed Sargassum naozhouense Tseng et Lu. Marine Drugs 11, 20-32.
Xie, E., D. Liu, C., Ji, A., Chen, X. L., and B Yang., 2013. Artificial seed production and cultivation of the edible brown alga Sargassum naozhouense Tseng et Lu. Journal of Applied Phycology. 25, 513-522.
Yan, X., Zhang, J., 2014. Zygotelogy of zygote and development of germling in Sargassum vachellianum Greville (Fucales, Phaeophyta). Journal of Phycology 26, 577-585.
Yoshida, T., Stiger, V., Horiguchi, T., 2000. Sargassum boreale sp. nov. (Fucales, Phaeophyceae) from Hokkaido, Japan. Phycological Research 48, 125-131.
Yoshida, T., Ajisaka, T., Noro, T., Horigushi, T., 2004. Species of the genus Sargassum subgenus Schizophycus. pp. 93-106. In: Abbott, I. A (ed). Taxonomy of economic seaweeds with reference to the Pacific and other locations, vol. 9. Hawaii Sea Grant College Program.
Zhang, X. Schmidt, R. E., 2000. Hormone-containing products impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Science 40, 1344-1349.
Zhang, C. Y., Wu, W. H., Wan,g J., Lan, M. B., Antioxidant properties of polysaccharide from the brown seaweed Sargassum graminifolium (Turn.), and its effects on calcium oxalate crystallization. Marine Drugs 2012. 10, 119–130.
Zhao, Z., Zhao, F., Yao, J., Lu, J., Jr, P. O. A., Duan. D., 2008. Early development of germlings of Sargassum thunbergii (Fucales, Phaeophyta) under laboratory conditions. Journal of Phycology. 20, 925-931.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔