[1] 李媛, 孟暉, 董穎,等. 中國地質災害類型及其特徵—基於全國縣市地質災害調查成果分析[J]. 中國地質災害與防治學報, 2004, 15(2): 29-34.
[2] FOURIE A B, OWE D R, BLIGHT G E. The effect ofinfiltration on the stability of the slopes of a dry ash dumps[J].Geotechnique, 1999, 49(1): 1– 13.
[3] LIM T T, RAHARDJO H, CHANG M F, et al. Effect of rainfall on matric suctions in a residual soil slope[J].Canadian Geotechnical Journal, 1996, 33(4): 618– 628
[4] Darcy H P G. Les Fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau, etc[M]. V. Dalamont, 1856.
[5] Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333.
[6] Srivastava S C, Singh J S. Microbial C, N and P in dry tropical forest soils: effects of alternate land-uses and nutrient flux[J]. Soil biology and Biochemistry, 1991, 23(2): 117-124.
[7] Iverson R M. Landslide triggering by rain infiltration[J]. Water resources research, 2000, 36(7): 1897-1910.
[8] Tracy F T. Analytical and Numerical Solutions of Richards' Equation with Discussions on Relative Hydraulic Conductivity[M]//Hydraulic Conductivity-Issues, Determination and Applications. IntechOpen, 2011.
[9] Ku C Y, Liu C Y, Su Y, et al. Modeling of transient flow in unsaturated geomaterials for rainfall-induced landslides using a novel spacetime collocation method[J]. Geofluids, 2018.
[10] Todsen M. On the solution of transient free-surface flow problems in porous media by finite-difference methods[J]. Journal of Hydrology, 1971, 12(3): 177-210.
[11] France P W, Parekh C, Peters J C, et al. Numerical analysis of free surface seepage problems[J]. Journal of the Irrigation and Drainage Division, 1971, 97(1): 165-179.
[12] Aitchison J. Numerical treatment of a singularity in a free boundary problem[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1972, 330(1583): 573-580.
[13] Liggett J A, Liu P L F. Unsteady interzonal free surface flow in porous media[J]. Water Resources Research, 1979, 15(2): 240-246.
[14] Liggett J A. Location of free surface in porous media[J]. Journal of the Hydraulics Division, 1977, 103(4): 353-365.
[15] Oden J T, Kikuchi N. Theory of variational inequalities with applications to problems of flow through porous media[J]. International Journal of Engineering Science, 1980, 18(10): 1173-1284.
[16] Cooley R L. Incorporation of prior information on parameters into nonlinear regression groundwater flow models: 1. Theory[J]. Water Resources Research, 1982, 18(4): 965-976.
[17] Cabral J J S P, Wrobel L C. Unconfined flow through porous media using B-Spline boundary elements[J]. Journal of Hydraulic Engineering, 1991, 117(11): 1479-1494.
[18] Lee K K, Leap D I. Simulation of a free-surface and seepage face using boundary-fitted coordinate system method[J]. Journal of Hydrology, 1997, 196(1-4): 297-309.
[19] Bardet J P, Tobita T. A practical method for solving free-surface seepage problems[J]. Computers and Geotechnics, 2002, 29(6): 451-475.
[20] Chen J T, Hsiao C C, Chiu Y P, et al. Study of free‐surface seepage problems using hypersingular equations[J]. Communications in numerical methods in engineering, 2007, 23(8): 755-769.
[21] Herreros M I, Mabssout M, Pastor M. Application of level-set approach to moving interfaces and free surface problems in flow through porous media[J]. Computer methods in applied mechanics and engineering, 2006, 195(1-3): 1-25.
[22] Ayvaz M T, Karahan H. Modeling three-dimensional free-surface flows using multiple spreadsheets[J]. Computers and Geotechnics, 2007, 34(2): 112-123.
[23] Darbandi M, Torabi S O, Saadat M, et al. A moving‐mesh finite‐volume method to solve free‐surface seepage problem in arbitrary geometries[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(14): 1609-1629.
[24] Lin C L. Digital simulation of the Boussinesq equation for a water table aquifer[J]. Water Resources Research, 1972, 8(3): 691-698.
[25] Wu M X, Yang L Z, Yu T. Simulation procedure of unconfined seepage with an inner seepage face in a heterogeneous field[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(6): 1139-1147.
[26] Bazyar M H, Talebi A. Locating the free surface flow in porous media using the scaled boundary finite-element method[J]. International Journal of Chemical Engineering and Applications, 2014, 5(2): 155.
[27] Li G, Ge J, Jie Y. Free surface seepage analysis based on the element-free method[J]. Mechanics Research Communications, 2003, 30(1): 9-19.
[28] Trefftz E. Ein gegenstuck zum ritzschen verfahren[C]//Proc. 2nd Int. Cong. Appl. Mech. Zurich. 1926: 131-137.
[29] Kołodziej J A, Grabski J K. Many names of the Trefftz method[J]. Engineering Analysis with Boundary Elements, 2018, 96: 169-178.
[30] Kita E, Kamiya N. Trefftz method: an overview[J]. Advances in Engineering Software, 1995, 24(1-3): 3-12.
[31] Li Z C, Huang H T. Effective condition number for numerical partial differential equations[J]. Numerical Linear Algebra with Applications, 2008, 15(7): 575-594.
[32] Dong L, Atluri S N. A simple multi-source-point Trefftz method for solving direct/inverse SHM problems of plane elasticity in arbitrary multiply-connected domains[J]. Computer Modeling in Engineering & Sciences(CMES), 2012, 85(1): 1-43.
[33] Mierzwiczak M, Kołodziej J A. Comparison of different methods for choosing the collocation points in the boundary collocation method for 2D-harmonic problems with special purpose Trefftz functions[J]. Engineering Analysis with Boundary Elements, 2012, 36(12): 1883-1893.
[34] Cheung Y K, Jin W G, Zienkiewicz O C. Direct solution procedure for solution of harmonic problems using complete, non‐singular, Trefftz functions[J]. Communications in applied numerical methods, 1989, 5(3): 159-169.
[35] Leitão V M A. On the implementation of a multi-region Trefftz-collocation formulation for 2-D potential problems[J]. Engineering Analysis with Boundary Elements, 1997, 20(1): 51-61.
[36] Wu C S, Lin S Y, Lin S R, et al. On the equivalence of method of fundamental solutions and Trefftz method for Laplace equation[J].
[37] Liu C. A modified Trefftz method for two-dimensional Laplace equation considering the domain's characteristic length[J]. Computer Modeling in Engineering and Sciences, 2007, 21(1): 53.
[38] Kita E, Ikeda Y, Kamiya N. Trefftz solution for boundary value problem of three-dimensional Poisson equation[J]. Engineering analysis with boundary elements, 2005, 29(4): 383-390.
[39] 郭仲倫,二維多連通區域的Laplace內外域問題研究,國立臺灣海洋大學機械與機電工程學系碩士論文,2007。
[40] Chen Y W, Liu C S, Chang J R. Applications of the modified Trefftz method for the Laplace equation[J]. Engineering analysis with boundary elements, 2009, 33(2): 137-146.
[41] 紀雅婷,Trefftz法使用一般解求解三維Laplace方程,國立中山大學應用數學學系碩士論文,2009。[42] Yeih W, Liu C S, Kuo C L, et al. On solving the direct/inverse Cauchy problems of Laplace equation in a multiply connected domain, using the generalized multiple-source-point boundary-collocation Trefftz method & characteristic lengths[J]. Computers, Materials & Continua (CMC), 2010, 17(3): 275.
[43] Liu C S, Atluri S N. Numerical solution of the Laplacian Cauchy problem by using a better postconditioning collocation Trefftz method[J]. Engineering Analysis with Boundary Elements, 2013, 37(1): 74-83.
[44] Ku C Y, Xiao J E, Liu C Y, et al. On the accuracy of the collocation Trefftz method for solving two-and three-dimensional heat equations[J]. Numerical Heat Transfer, Part B: Fundamentals, 2016, 69(4): 334-350.
[45] Wang G, Dong L, Atluri S N. A Trefftz collocation method (TCM) for three-dimensional linear elasticity by using the Papkovich-Neuber solutions with cylindrical harmonics[J]. Engineering Analysis with Boundary Elements, 2018, 88: 93-103.
[46] Xiao J E, Ku C Y, Liu C Y, et al. A Novel Boundary-Type Meshless Method for Modeling Geofluid Flow in Heterogeneous Geological Media[J]. Geofluids, 2018.
[47] Ku C Y, Xiao J E, Liu C Y, et al. On modeling subsurface flow using a novel hybrid Trefftz–MFS method[J]. Engineering Analysis with Boundary Elements, 2019, 100: 225-236.
[48] Kuo C L, Yeih W, Liu C S, et al. Solving Helmholtz equation with high wave number and ill-posed inverse problem using the multiple scales Trefftz collocation method[J]. Engineering Analysis with Boundary Elements, 2015, 61: 145-152.
[49] Kita E, Ikeda Y, Kamiya N. Indirect Trefftz method for boundary value problem of Poisson equation[J]. Engineering Analysis with Boundary Elements, 2003, 27(8): 825-833.
[50] Ku C Y. On solving three-dimensional Laplacian problems in a multiply connected domain using the multiple scale Trefftz method[J]. CMES: Computer Modeling in Engineering & Sciences, 2014, 98(5): 509-541.
[51] Ku C Y, Kuo C L, Fan C M, et al. Numerical solution of three-dimensional Laplacian problems using the multiple scale Trefftz method[J]. Engineering Analysis with Boundary Elements, 2015, 50: 157-168.
[52] Li Z C, Lu T T, Hu H Y, et al. Trefftz and collocation methods[M]. WIT press, 2008.
[53] Chen J T, Wu C S, Lee Y T, et al. On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations[J]. Computers & Mathematics with Applications, 2007, 53(6): 851-879.
[54] Tsai C C, Lin Y C, Young D L, et al. Investigations on the accuracy and condition number for the method of fundamental solutions[J]. Computer Modeling in Engineering and Sciences, 2006, 16(2): 103.
[55] Li Z C, Lu T T, Tsai H S, et al. The Trefftz method for solving eigenvalue problems[J]. Engineering Analysis with Boundary Elements, 2006, 30(4): 292-308.
[56] Kita E, Kamiya N, Iio T. Application of a direct Trefftz method with domain decomposition to 2D potential problems[J]. Engineering Analysis with Boundary Elements, 1999, 23(7): 539-548.
[57] Jin W G, Cheung Y K, Zienkiewicz O C. Trefftz method for Kirchhoff plate bending problems[J]. International Journal for Numerical Methods in Engineering, 1993, 36(5): 765-781.
[58] Fan C M, Chan H F, Kuo C L, et al. Numerical solutions of boundary detection problems using modified collocation Trefftz method and exponentially convergent scalar homotopy algorithm[J]. Engineering Analysis with Boundary Elements, 2012, 36(1): 2-8.
[59] Fellenius W. Calculation of stability of earth dam[C]//Transactions. 2nd Congress Large Dams, Washington, DC, 1936. 1936, 4: 445-462.
[60] Zhu D Y, Lee C F, Jiang H D. Generalised framework of limit equilibrium methods for slope stability analysis[J]. Geotechnique, 2003.
[61] Duncan J M. State of the art: limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical engineering, 1996, 122(7): 577-596.
[62] Janbu N. Slope stability computations[J]. Publication of: Wiley (John) and Sons, Incorporated, 1973.
[63] 陳怡雯,應用Trefftz配點法於滲流問題之研究,國立臺灣海洋大學河海工程學系碩士論文,2016。[64] 王書翰,Trefftz法應用於三維穩態地下水滲流問題之研究,國立臺灣海洋大學河海工程研究所碩士論文,2013。[65] Ku C Y, Liu C Y, Xiao J E, et al. Transient modeling of flow in unsaturated soils using a novel collocation meshless method[J]. Water, 2017, 9(12): 954.