參考文獻
1. 李隆振(2002) 臺灣近期股價預測之研究,國立中正大學數學研究所碩士論文。2. 林茂文.(2006) 時間數列分析與預測: 管理與財經之應用, 三版,華泰文化。
3. 施政榮.(1989)總統府月會之演講 - 心懷科技 放眼天下。
4. 曹晉彰.(1990). 股價指數與總體經濟因素的關係:以時間序列模式 (ARIMA)分析. National Taiwan University Graduate Institute of Business Administration。
5. 財政部統計處 https://www.mof.gov.tw/
6. 曾淑惠, & 王志成.(2003).亞洲金融危機後台灣出口貿易之動態分析-時間數列模式之應用. 智慧科技與應用統計學報, 1(1), 43-66。
7. 楊奕農. (2009). 時間序列分析: 經濟與財務上之應用. 雙葉書廊.
8. 潘浙楠, 席嘉澤, & 陳曉倩. (2009). 自我相關殘差管制圖模型選取之研究. 品質學報, 16(4), 245-260.
9. 蔡政良. (2004).最適利率預測模型之建構-以泰勒法則, ARIMA 為實證分析析 (Doctoral dissertation, 長庚大學).
10. 鍾侑達、郭峻菖、陳昶憲(2009年12月,農業工程學報第55卷第4期)。
11.Akaike, H. (1974). Stochastic theory of minimal realization. IEEE Transactions on Automatic Control, 19(6), 667-674.
12.Box, G., & Jenkins, G. (1976). Time series analysis: forecasting and control.
13.Fama, E. F. (1990). Stock returns, expected returns, and real activity. The journal of finance, 45(4), 1089-1108.
14.FISHER, R. A. 1922b. The goodness of fit of regression formulae, and the distribution of regression coefficients. J. Roy.
15.Huang, N. E., & Shen, Z. (1998). Long, SR Wu, MC Shih, HH Zheng, Q. Yen, NC Tung, CC and Liu. HH [The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis, Proceedings of the royal society of London, vol 454, pp. 903-995].
16.Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
17.Pai, P.-F., & Lin, C.-S. (2005). A hybrid ARIMA and support vector machines model in stock price forecasting. Omega, 33(6), 497-505.
18.Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike's information criterion. Biometrika, 63(1), 117-126.
19.Wood, D., & Dasgupta, B. (1996). Classifying trend movements in the MSCI USA capital market index—a comparison of regression, ARIMA and neural network methods. Computers & Operations Research, 23(6), 611-622.
20.Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.