跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪宣微
研究生(外文):Hung, Hsuan-Wei
論文名稱:主成份分析法於基隆市淹水災害風險評估之研究
論文名稱(外文):Flood Risk Assessment Using Principal Component Analysis for Keelung City
指導教授:顧承宇顧承宇引用關係
指導教授(外文):Cheng-Yu Ku
口試委員:簡連貴莊睦雄
口試委員(外文):lien-kwei chienChuang, Mo-Hsiung
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:125
中文關鍵詞:風險評估淹水災害基隆市主成份分析法韌性
外文關鍵詞:risk assessmentfloodingKeelung Cityprincipal component analysisresilience
相關次數:
  • 被引用被引用:4
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:1
臺灣為四面環海之島國,受全球氣候變遷影響,極端災害事件頻率與強度遽增,其中以淹水災害為臺灣最常見的天然災害,時常對環境及人民生財產安全造成嚴重損失,因此,本論文針對淹水災害進行風險評估之研究。
本研究建置淹水災害風險評估之模式,並選定基隆市為研究示範區進行災害風險分析。研究過程除了針對淹水災害之危害度及脆弱度進行分析以外,同時考慮災中應變與災後回復能力,將韌性指標以脆弱度指標之子集合方式加入本研究風險評估模式當中,並運用風險矩陣的概念結合各項指標進行分析,以產製基隆市淹水災害風險地圖。對於風險分析而言,各指標因子的權重分配問題為本研究分析重要工作項目之ㄧ,本研究選定主成份分析方法進行演算,該方法屬於科學計算法,具有分析時間短與數據差異極大化等優勢,相較於常見的專家問卷方法,可以大幅減低分析結果受到人為因素的影響程度。
研究結果顯示,本研究成功將主成份分析法應用於風險評估之權重計算,並建置基隆市淹水災害風險評估模式,同時於該模式中建立基隆市本土化大數據資料庫,且針對地方災害特性進行研究與分析。基隆市淹水風險分析結果,未來可以提供政府機關於地方性災害防救管理與施政之參考。
Flood is one of the major natural and human-induced hazards mostly by the transformation of the natural condition. The frequency of flood compared with other disaster is rapidly increasing and posing a serious threat to human life and loss property. Mitigation of flood disaster is a global concern mainly due to urbanization and climate change. In case of limited resources in Taiwan, how to decrease flood loss and to promote the sustainable use of land are a crucial issue to ensure sustainable development of natural environmental resources.
In this context, we address this problem by disaster risk analysis, which first collects the basic information in Keelung City. The study conducts the flood disaster, susceptibility, vulnerability, and resilience. The hazard and vulnerability of flood disaster are analyzed and the results are brought into the risk matrix to produce a risk map. Weight is an important part of risk analysis. In this study, we conducted a flood risk assessment using principal component analysis(PCA), in which PCA is a mathematical procedure that transforms a number of possibly correlated variables into a number of uncorrelated variables called principal components. Through the PCA, we obtained the dominate factors from vulnerable and susceptible groups for the risk analysis.
The principal component analysis has more advantage with accelerated in process, low error and can improve the discrimination of analysis results compare with the analytic hierarchy process. In addition, demonstrate that high-risk areas for flood in this study area are mainly located around the rivers/drainage system in Keelung City. It can be concluding that very important to put more attention to prevent flood disaster especially for the districts or places near the rivers system. It is expected that results from this study can be used to propose the measures and the elaboration of adaptation strategies.
摘要 I
Abstract II
目次 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1前言 1
1.2研究動機及目的 2
1.3研究內容與架構 2
第二章 文獻回顧 4
2.1災害風險 4
2.2危害度 7
2.2.1危害度定義 7
2.2.2危害度指標因子 7
2.3脆弱度 9
2.3.1脆弱度定義 9
2.3.2脆弱度指標因子 12
2.4韌性 15
2.4.1韌性定義 16
2.4.2韌性指標因子 18
2.4.3脆弱度與韌性之比較 21
2.5風險指標權重分析 22
第三章 研究區域與分析方法 25
3.1研究整體規劃 25
3.2研究區域 26
3.2.1研究區域概述 27
3.2.2研究區域之災害熱區分析 29
3.3主成份分析法 37
3.3.1主成份分析理論 38
3.3.2共變異矩陣與相關係數矩陣 40
3.3.3特徵值及特徵向量 41
3.3.4主成份負荷數(Loading) 41
3.3.5主成份貢獻率 42
3.3.6主成份選取基準 42
3.3.7主成份權重分析 43
3.4風險矩陣 44
第四章 淹水災害風險評估技術之建置 45
4.1災害危害度指標分析 46
4.1.1淹水災害危害度因子說明 47
4.1.2危害度指標主成份分析 60
4.1.3基隆市淹水災害危害度分級地圖 63
4.2災害脆弱度指標分析 73
4.2.1淹水災害脆弱度因子說明 73
4.2.2脆弱度指標主成份分析 85
4.2.3基隆市淹水災害脆弱度分級地圖 88
4.3災害韌性指標分析 94
4.3.1淹水災害韌性因子說明 94
4.3.2考慮韌性指標之主成份分析 98
4.3.3基隆市淹水災害韌性分級地圖 103
4.4災害風險分析 108
4.4.1基隆市淹水災害風險分析 109
4.4.2基隆市淹水災害風險調適 115
第五章 結論與建議 120
5.1結論 120
5.2建議 121
參考文獻 122
[1] Australian Geomechanics Society. 2000. LANDSLIDE RISK MANAGEMENT CONCEPTS AND GUIDELINES.
[2] Adger, W.N., Brooks, N., Bentham, G., Agnew, M. and Eriksen, S., ‘New indicators of vulnerability and adaptive capacity’, Tyndall Centre Technical Report 7, Tyndall Centre for Climate Change Research Norwich, UK, 2004.
[3] Alexandre Oliveira Tavares, Pedro Pinto dos Santos, Paula Freire, Andre´ Bustorff Fortunato, Ana Rilo, Luı´s Sa, Flooding hazard in the Tagus estuarine area: The challenge of scale in vulnerability assessments, environmental science & policy, pp.238-255, 2015.
[4] Azotea, Marc Sinan B, Necesito, Imee V., Cheong, Tae Sung, Yu, Insang, and Jeong, Sangman, Evaluation of Flood Damages Using Principal Component Analysis, J. Korean Soc. Hazard Mitig., vol.15(4), pp.215-220, 2015.
[5] Arpita Nandi, Arpita Mandal, Matthew Wilson, David Smith, Flood hazard mapping in Jamaica using principal component analysis and logistic regression, Environ Earth Sci, vol.75:465, 2016.
[6] B. L. Turner II; Roger E. Kasperson; Pamela A. Matson; James J. McCarthy; Robert W. Corell; Lindsey Christensen; Noelle Eckley; Jeanne X. Kasperson; Amy Luers; Marybeth L. Martello; Colin Polsky; Alexander Pulsipher; Andrew Schiller, A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences. 100 (14): 8074-8079.
[7] Bohle, H.G., Downing, T.E., Watts, M.J. 1994. Climate change and social vulnerability: toward a sociology and geography of food insecurity. Global Environmental Change 4: 37-48, 2003.
[8] Cutter,S. L., Vulnerability to environmental hazards. Progress in Human Geography, vol.20(4), pp.529-539, 1996.
[9] Cutter, S.L.; Boruff, B.J.; Shirley,W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261.
[10] Cutter,S. L. 2008. A place-based model for understanding community resilience to natural disasters. Global Environmental Change 18(4):598-606
[11] Chubb, H., Simpson, J.M., The use of Z-scores in paediatric cardiology, Ann Pediatr Cardiol, vol.5, pp.179-184, 2012.
[12] Clark, G.; Moser, S.; Ratick, S.; Dow, K.; Meyer, W.; Emani, S.; Jin, W.; Kasperson, J.; Kasperson, R.; Schwarz, H. E. 1998. Assessing the vulnerability of coastal communities to extreme storms: The case of Revere, MA., USA. Mitigation and Adaptation Strategies for Global Change 3: 59-82.
[13] Coburn, A. ; Spence, R., Earthquake Protection,WILEY, 2002.
[14] Cox LA Jr, What’s Wrong with Risk Matrices? Risk Analysis, Vol. 28, No. 2, pp.497-512, 2008.
[15] Getahun YS and Gebre SL, Flood Hazard Assessment and Mapping of Flood Inundation Area of the Awash River Basin in Ethiopia using GIS and HEC-GeoRAS/HEC-RAS Model, Civil & Environmental Engineering, vol.5:4, 2015.
[16] Hammer, W. 1972. Handbook of System and Product Safety, Prentice-Hall.
[17] Hewitt, K. 1997. Regions of Risk: A Geographical Introduction to Disasters,Wesley Longman, Essex, Addison.
[18] Hoff, H.; Bouwer, L.M.; Berz, G.; Kron, W.; Loster, T. 2003. Risk management in water and climate- the role of insurance and other financial services, International Dialogue on Water and Climate.
[19] Hu, B.B.; Zhou, J. ; Wang, J.; Chen, Z.L.; Wang, D.Q.; Xu, S.Y. 2009. Risk assessment of land subsidence at Tianjin coastal area in China, ENVIRONMENTAL EARTH SCIENCES 59 (2): 269-276.
[20] Hu, B.B.; Zhou, J. ; Wang, J.; Chen, Z.L.; Wang, D.Q.; Xu, S.Y. 2009. Risk assessment of land subsidence at Tianjin coastal area in China, ENVIRONMENTAL EARTH SCIENCES 59 (2): 269-276.
[21] Huang, B., Shu, L., Yang, Y. S., Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling. Water Resour Manage 26:4225–4239, 2012.
[22] Hsueh-Sheng Chang and Tzu-Ling Chen, Spatial heterogeneity of local flood vulnerability indicators within flood-prone areas in Taiwan, Environ Earth Sci, vol.75:1484, 2016.
[23] Intergovernmental Panel on Climate Change (IPCC), Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX): 25-64, 2011.
[24] Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis.
[25] Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W. 2015. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environmental Science & Policy 4 7: 4 2 – 5 2
[26] Martina, U., Ksenija, B., Lidija, B.Z., Mladen, P. 2007 What we need to know when calculating the coefficient of correlation? BIOCHEMIA MEDICA 17(1):10-15
[27] Qiu, M.; Shi, L.; Teng, C.; Zhou, Y. 2017.Assessment of Water Inrush Risk Using the Fuzzy Delphi Analytic Hierarchy Process and Grey Relational Analysis in the Liangzhuang Coal Mine, China, MINE WATER AND THE ENVIRONMENT 36 (1): 39-50.
[28] R. Bell and T. Glade, Quantitative risk analysis for landslides – Examples from B´ıldudalur, NW-Iceland, Natural Hazards and Earth System Sciences, vol.4, pp.117-131, 2004.
[29] Rygel, L.; O'Sullivan, D.; Yarnal, B., A method for constructing a social vulnerability. Mitigation and Adaptation Strategies for Global Change 11(3):741-764, 2006.
[30] Roshan Wahab and Robert Tiong, Multi-variate residential flood loss estimation model for Jakarta: an approach based on a combination of statistical techniques, Nat Hazards, vol.86, pp.779–804, 2017.
[31] Shao, H., Liu, M., Shao, Q., Sun, X. 2014. Research on eco-environmental vulnerability evaluation of the Anning River Basin in the upper reaches of the Yangtze River. Environ Earth Sci.72:1555-1568
[32] Shaw, J.; Taylor, R.B.; Forbes, D.L.; Ruz, M.-H.; Solomon, S. Sensitivity of the Coasts of Canada. Geol. Surv. Can. Bull. 1998, 505.
[33] Uitto, J. I. 1998 The geography of disaster vulnerability in megacities: A theoretical framework. Applied Geography 18(1):7-16
[34] United Nations Disaster Relief Organization(UNDRO). 1979.Natural disasters and vulnerability analysis : report of Expert Group Meeting,Geneva,UNDRO books.
[35] United Nations international strategy for disaster reduction (UNISDR). 2002. Living with risk: a global review of disaster reduction initiatives.
[36] United Nations international strategy for disaster reduction (UNISDR). 2009. Terminology on disaster risk reduction.
[37] United Nations international strategy for disaster reduction (UNISDR). 2002. Living with risk: a global review of disaster reduction initiatives.
[38] Zahra Kalantari, Alireza Nickman, Steve W.Lyon, Bo Olofsson, Lennart Folkeson, A method for mapping flood hazard along roads, Journal of Environmental Management, vol.133, pp.69-77, 2014.
[39] Zanetti, V.B.; Sousa Junior, W.C.; De Freitas, D.M. 2016. A climate change vulnerability index and case study in a Brazilian coastal city. Sustainability 8 (8):811.
[40] 內政部國土測繪中心,國土利用調查成果資訊專區,http://lui.nlsc.gov.tw/Home/Content_Home.aspx。
[41] 內政部國土測繪中心,http://www.nlsc.gov.tw/。
[42] 內政部戶政司,http://www.ris.gov.tw/。
[43] 吳杰穎、邵珮君、林文苑、柯于璋、洪鴻智、陳天健、陳亮全、黃智彥、詹士樑、薩支平,災害管理學辭典,2007。
[44] 國立臺灣大學,台灣脆弱度及風險地圖製作與整合應用(2/2),經濟部水利署,2010
[45] 陳建智,台灣脆弱性指標建構與評估之研究,國立臺北大學碩士論文,2008。
[46] 中央與地方防救災情資整合研究計畫-基隆市(2/3),MOST 108-2119-M-019-001,2019。
[47] 謝承憲、蘇昭郎、鄧敏政,公路橋梁失效之地區脆弱度分析-以大甲溪流域為例,中華民國運輸學會 99 學術論文國際研討會,論文集 P.1833~P.1849 頁,2010。
[48] 雷人傑,氣候變遷下本土海岸地區脆弱度評估與調適策略之研究,國立台灣海洋大學碩士論文,2012
[49] 黃筱真,基隆市坡地災害風險評估之研究,國立臺灣海洋大學河海工程學系碩士論文,2014。
[50] 吳敬平,土壤液化風險評估於臺灣土地開發利用之研究,國立臺灣海洋大學碩士論文,2017
[51] 劉紹安,雲林縣濱海陸地區地層下陷之風險評估,國立臺灣海洋大學河海工程學系碩士論文,2018。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top