跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 06:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李進發
研究生(外文):Li, Jin-Fa
論文名稱:地質因子對山區裂隙岩層地下水退水行為之研究
論文名稱(外文):Geological influences on groundwater recession behavior of fractured rock in Taiwan mountainous region
指導教授:許世孟許世孟引用關係
指導教授(外文):Hsu, Shih-Meng
口試委員:王承德陳俶季許世孟
口試委員(外文): Hsu, Shih-Meng
口試日期:2019-07-25
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:92
中文關鍵詞:退水率滲透性潛勢指標裂隙岩體地下水位歷線法補注高度
外文關鍵詞:recession ratehydro-potential indexwater table fluctuation methodfractured rockrecharge height
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
地下水位的觀測資料可以顯示水文循環反應、降雨補注及地下水含水層系統水文地質特性等,因此在進行地下水補注量推估時,需先了解地下水位洩降退水變動的行為表現,及其不同深度變動的情況是否與地層水力特性具連動特性,對建立適當之地下水補注推估模式有很大幫助,尤其研究的目標地質環境為山區地層時更加需要。因為降雨入滲山區岩層地下水補注過程中,受裂隙岩體本身存在許多複雜構造及岩性差異,會影響補注時間快慢或是補注量之多寡,因此本研究旨在發展發展降雨入滲至山區地層環境之地下水補注量估算技術,研究重點在進行山區地層組成特性與地下水退水率之間關聯性研究,以建構兩者之間關係式,並結合適當地層滲透性推估模式建立退水率經驗公式,協助提升地下水補注量計算之速度,且模式同時兼顧反應出地下水系統在山區地質環境內在屬性變化的退水行為。
本研究從臺灣中部山區流域蒐集到20口山區長期之地下水位資料,觀測時間3至8年,以此資料初步建置每個觀測站地下水補注量推估模式。此外,透過實際分析資料證實每口井不同深度地層之地質條件主控退水發生速率,並藉此提出裂隙岩體(HPF)滲透性指標推估模式,量化計算估算退水區段之地層滲透性,同時,獲得具高度相關性之退水率與滲透性指標經驗公式,達到地下水補注量計算加速之目的。最後,本研究比較新發展之補注量推估方法與平原區傳統做法之推估結果差異,顯示如以平原區採用乾季所得之退水斜率作為代表性斜率值,應用至其他豐水期的補注事件,補注量會產生低估情況發生,尤其在山區地質變異較大的地質環境常遇到。
Groundwater monitoring data reveal response of hydrological cycle, rainfall-recharge processes, and hydrogeologic characteristics of groundwater aquifers. Prior to quantitatively estimating groundwater recharge, groundwater recession behavior and correlations between recession rates varying with depths and aquifer hydraulic properties must be understood. This is beneficial to developing a more realistic estimation model for groundwater recharge, which is particularly important in study areas where recharge occurs in the formation of mountainous areas. Since groundwater recharge to regolith-fractured rock aquifers dominates by lithology and fracture properties, this may affect the duration and amount of recharge. Thus, this study is to develop groundwater recharge estimation techniques within regolith and fractured rock formations. The main point of this research is to conduct correlation studies between fractured rock properties and recession rates. Meanwhile, the above study outcome incorporated into two rock mass permeability index systems is capable of developing empirical models for estimating recession rates which can help speed up groundwater recharge calculation and obtain actual recession behaviors in response to intrinsic properties of regolith-fractured rock aquifers.
This study collected groundwater monitoring data from 20 wells located in the mountain basin in central Taiwan. The maximum monitoring data applied here lasts for eight years; the least period is three years. Based on these groundwater data, the groundwater recharge estimation model for each well has been developed. Besides, this study confirmed that geological conditions varied with depths controlled recession rates. Subsequently, the rock mass permeability index systems (HPF) that can quantitatively estimate hydraulic properties for recession periods were proposed. Meanwhile, the study obtained an empirical model of recession rate versus permeability index with a high correlation for each well. This outcome can meet the objective of helping ease groundwater recharge calculation. Finally, a comparison between the proposed method and the traditional method, which used the recession rate occurred in the dry season as a representative recession rate, has been conducted. The result indicated the traditional approach underestimated groundwater recharge amount because the typical recession rate is not applicable to actual recession behaviors occurred in the wet season. In particular, computational differences frequently appear in complex geological environments.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 前言 1
1.1研究背景 1
1.2研究動機 1
1.3研究目的 2
第二章 文獻回顧 3
2.1 地下水退水行為特性分析 3
2.2裂隙岩體地下水補注量推估 4
2.3 岩體滲透性推估經驗公式 5
2.4 小結 6
第三章 研究方法 7
3.1 地下水退水區段劃定 7
3.2 裂隙岩體滲透潛勢指標 10
3.2.1 裂隙岩體滲透潛勢指標組成因子及評分標準 10
3.2.2 裂隙岩體滲透潛勢指標 15
3.3 裂隙岩體滲透潛勢指標與退水率之關聯性分析 15
第四章 研究成果與討論 16
4.1 模式發展所蒐集相關資料描述 16
4.1.1 研究區域概述 16
4.1.2 地下水位 20
4.1.3 雨量 20
4.2 降雨補注對水位之影響時長 25
4.3 退水率與裂隙岩體組構關係 28
4.3.1 退水率 28
4.3.2 裂隙岩體滲透性潛勢值 30
4.3.3 地下水退水行為預測模式 30
4.4 模式運用 32
第五章 結論與建議 35
5.1 結論 35
5.2建議 36
參考文獻 37
附錄ㄧ 地下水位歷線與降雨量分布圖 41
附錄二 退水線分布圖 48
附錄三 各深度代表性退水率 53
附錄四 退水率隨深度分布圖 58
附錄五 裂隙岩體滲透潛勢值總表 63
附錄六 關聯性分析成果 68
附錄七 退水段岩心照片 77
附錄八 補注高度計算表 84
附錄九 地下水位歷線分析圖 87
參考文獻
1. Adnan, S., Iqbal, J., Maltamo, M., and Valbuena, R. (2018). "GIS-based DRASTIC model for groundwater vulnerability and pollution risk assessment in the Peshawar District, Pakistan." Arab. J. Geosci., 11(16), 13.
2. Aller, L. (1985). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings, Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
3. Babiker, I. S., Mohamed, M. A. A., Hiyama, T., and Kato, K. (2005). "A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan." Sci. Total Environ., 345(1-3), 127-140.
4. Birkholzer, J., Houseworth, J., and Tsang, C. F. (2012). "Geologic Disposal of High-Level Radioactive Waste: Status, Key Issues, and Trends." Annual Review of Environment and Resources, Vol 37, A. Gadgil, and D. M. Liverman, eds., Annual Reviews, Palo Alto, 79-+.
5. Black, J. (1987). "Flow and flow mechanisms in crystalline rock." Geological Society, London, Special Publications, 185-200.
6. Burgess, A. (1977). "Groundwater movements around a repository-regional groundwater analysis." KBS 54:03, Kaernbraenslesaekerhet, Stockholm, Sweden, 116.
7. Carlsson, A., and Olsson, T. (1978). "Variations of hydraulic conductivity in some Swedish rock types." Storage in Excavated Rock Caverns: Rockstore 77, Elsevier, 301-307.
8. Delin, G. N., Healy, R. W., Lorenz, D. L., and Nimmo, J. R. (2007). "Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA." J. Hydrol., 334(1-2), 231-249.
9. Dematteis, A. (2015). "Proposal for Guidelines on Sustainable Water Management in Tunnels." Engineering Geology for Society and Territory, Springer, 985-987.
10. Flint, A. L., Flint, L. E., Kwicklis, E. M., Fabryka-Martin, J. T., and Bodvarsson, G. S. (2002). "Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods." Hydrogeol. J., 10(1), 180-204.
11. Gates, W. C. B. (1997). "The hydro-potential (HP) value: A rock classification technique for evaluation of the ground-water potential in fractured bedrock." Environ. Eng. Geosci., 3(2), 251-267.
12. Gautschi, A. (2017). "Safety-relevant hydrogeological properties of the claystone barrier of a Swiss radioactive waste repository: An evaluation using multiple lines of evidence." Grundwasser, 22(3), 221-233.
13. Gimeno, M. J., Auque, L. F., Acero, P., and Gomez, J. B. (2014). "Hydrogeochemical characterisation and modelling of groundwaters in a potential geological repository for spent nuclear fuel in crystalline rocks (Laxemar, Sweden)." Appl. Geochem., 45, 50-71.
14. Hamm, S. Y., Kim, M., Cheong, J. Y., Kim, J. Y., Son, M., and Kim, T. W. (2007). "Relationship between hydraulic conductivity and fracture properties estimated from packer tests and borehole data in a fractured granite." Eng. Geol., 92(1-2), 73-87.
15. Healy, R. W., and Cook, P. G. (2002). "Using groundwater levels to estimate recharge." Hydrogeol. J., 10(1), 91-109.
16. Hsu, S. M., Lo, H. C., Chi, S. Y., and Ku, C. Y. (2008). "Rock mass hydraulic conductivity estimated by two empirical models." Developments in Hydraulic Conductivity Research, 134-158.
17. Hsu, S. M., Lo, H. C., Chou, P. Y., Lee, W. L., Lin, Y. T., Huang, C. C., and Wang, Y. S. (2011). "Application of hydrogeological investigation to determine groundwater modeling approach in Taiwan mountainous region." Proc., 8th Asia Oceania Geosciences Society (AOGS) annual meetingTaipei, Taiwan.
18. Hsu, S. M. and Lee, J. F. (2018) "Groundwater recession curve analysis and recharge estimation for the mountainous fractured rock environment: a case study in the mid- and upper-Jhuoshuei river basin in central Taiwan." International Conference On New Approaches To Groundwater Vulnerability 2018.
19. ISRM, B. E. (1981). "Suggested methods: rock characterization, testing and monitoring." ISRM Commission on Testing Methods. Pergamon, Oxford.
20. Jahangeer, Gupta, P. K., and Yadav, B. K. (2017). "Transient Water Flow and Nitrate Movement Simulation in Partially Saturated Zone." J. Irrig. Drainage Eng-ASCE, 143(12), 8.
21. Khosravi, K., Sartaj, M., Tsai, F. T. C., Singh, V. P., Kazakis, N., Melesse, A. M., Prakash, I., Bui, D. T., and Pham, B. T. (2018). "A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment." Sci. Total Environ., 642, 1032-1049.
22. Lee, C. H., and Farmer, I. W. (1993). Fluid flow in discontinuous rocks, Chapman & Hall.
23. Lee, C. H., Chen, W. P., and Lee, R. H. (2006). "Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis." Environ. Geol., 51(1), 73-82.
24. Louis, C. (1972). "Rock hydraulics." Rock mechanics, Springer, 299-387.
25. Perrin, J., Ahmed, S., and Hunkeler, D. (2011). "The effects of geological heterogeneities and piezometric fluctuations on groundwater flow and chemistry in a hard-rock aquifer, southern India." Hydrogeol. J., 19(6), 1189-1201.
26. Plasencia, N., Carvalho, J. M., and Cavaco, T. (2015). "Groundwater monitoring impacts of deep excavations: hydrogeology in the Venda Nova repowering schemes (NW Portugal)." Environ. Earth Sci., 73(6), 2981-2995.
27. Singhal, B. B. S., and Gupta, R. P. (2010). Applied hydrogeology of fractured rocks, Springer Science & Business Media
28. Snow, D. T. (1968). "Rock fracture spacings, openings, and porosities." Journal of Soil Mechanics & Foundations Div.
29. Snow, D. T. (1970). "The frequency and apertures of fractures in rock." Proc., International journal of Rock mechanics and Mining sciences & Geomechanics Abstracts, Elsevier, 23-40.
30. Spitz, K., and Moreno, J. (1996). A practical guide to groundwater and solute transport modeling, John Wiley and sons.
31. Vu, V. H., and Merkel, B. J. (2019). "Estimating groundwater recharge for Hanoi, Vietnam." Sci. Total Environ., 651, 1047-1057.
32. Wei, Z., Egger, P., and Descoeudres, F. (1995). "Permeability predictions for jointed rock masses." Proc., International journal of rock mechanics and mining sciences & geomechanics abstracts, Elsevier, 251-261.
33. Yang, F. R., Lee, C. H., Kung, W. J., and Yeh, H. F. (2009). "The impact of tunneling construction on the hydrogeological environment of "Tseng-Wen Reservoir Transbasin Diversion Project" in Taiwan." Eng. Geol., 103(1-2), 39-58.
34. Yousif, M., Henselowsky, F., and Bubenzer, O. (2018). "Palaeohydrology and its impact on groundwater in arid environments: Gebel Duwi and its vicinities, Eastern Desert, Egypt." Catena, 171, 29-43.
35. 王詩婷、陳宇文、黃韋儒、張良正、江崇榮、王詠絢、賴慈華、陸挽中(2019)。 濁水溪沖積扇之地下水文特徵研究-地下水位退水線探勘分析。農業工程學報,65(2),12-22。
36. 江崇榮、黃智昭、陳瑞娥、費立沅(2004)。屏東平原地下水補注量及抽水量評估。經濟部中央地質調查所彙刊第十七號,第 21-51 頁。
37. 徐年盛、江崇榮、汪中和、劉振宇、劉宏仁、黃建霖(2011)。多類灌溉型式下地下水系統抽水量與補注量之估算。農業工程學報,第 58 卷第 1 期。
38. 李進發、許世孟(2018)。裂隙岩體含水層地下水退水行為分析與補注量推估。第十屆地下水資源及水質保護研討會暨2018海峽兩岸地下水與水文地質應用研討會。桃園。
39. 陳文福、曹鎮、林志憲(2007)。頻譜與濾波分析應用於地下水位變動研究。中興工程(95),79-85。
40. 賴建信(2017)。運用地下潛藏活水建構韌性水臺灣。2017山區水文地質與地下水資源調查成果發表會。台北。
41. 賴建信(2018)。氣候變遷下地水資源運用策略。第十屆地下水資源及水質保護研討會暨 2018 海峽兩岸地下水與水文地質應用研討會。桃園。
42. 經濟部水利署(2012)。臺灣地區地下水觀測網整體計畫精要成果彙編(81-100年)。
43. 經濟部中央地質調查所(2010)。臺灣山區地下水資源調查調查研究整體計畫—臺灣中段山區地下岩層水力特性調查與地下水位觀測井建置(1/4)。財團法人中興工程顧問社。
44. 經濟部中央地質調查所(2011)。臺灣山區地下水資源調查調查研究整體計畫—臺灣中段山區地下岩層水力特性調查與地下水位觀測井建置(2/4)。財團法人中興工程顧問社。
45. 經濟部中央地質調查所(2012)。臺灣山區地下水資源調查調查研究整體計畫—臺灣中段山區地下岩層水力特性調查與地下水位觀測井建置(3/4)。財團法人中興工程顧問社。
46. 經濟部中央地質調查所(2013)。臺灣山區地下水資源調查調查研究整體計畫—臺灣中段山區地下岩層水力特性調查與地下水位觀測井建置(4/4)。財團法人中興工程顧問社。
47. 經濟部中央地質調查所(2014)。臺灣南段山區地下水資源調查計畫—臺灣南段山區地下水位觀測與水力特性調查(1/4)。財團法人中興工程顧問社。
48. 經濟部中央地質調查所(2015)。臺灣南段山區地下水資源調查計畫—臺灣南段山區地下水位觀測與水力特性調查(2/4)。財團法人中興工程顧問社。
49. 經濟部中央地質調查所(2016)。臺灣南段山區地下水資源調查計畫—臺灣南段山區地下水位觀測與水力特性調查(3/4)。財團法人中興工程顧問社。
50. 經濟部中央地質調查所(2017)。臺灣南段山區地下水資源調查計畫—臺灣南段山區地下水位觀測與水力特性調查(4/4)。財團法人中興工程顧問社。
51. 經濟部中央地質調查所(2018)。臺灣北段山區地下水資源調查計畫-水文地質調查及觀測井建置-北段山區及地下水補注敏感區(1/4) 。財團法人中興工程顧問社。
52. 許世孟(2016)。井下探測資訊加值於大地工程應用研究。科技部補助專題研究計畫成果報告(編號:105-2218-E-019 -004 -)。
53. 許世孟(2018)。裂隙岩體含水層地下水退水行為分析與補注量推估研究。科技部補助專題研究計畫成果報告(編號:106-2119-M-019 -005 -)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top