跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪芯儀
研究生(外文):Hung, Hsin-I
論文名稱:安曼司石花菜熱水萃物對高脂飲食大鼠脂質代謝之影響
論文名稱(外文):Effects of Gelidium amansii Hot Water Extract on Lipid Metabolism in High-Fat-Diet Rats
指導教授:江孟燦江孟燦引用關係劉興華劉興華引用關係
指導教授(外文):Chiang, Meng-TsanLiu, Shing-Hwa
口試委員:江文章林璧鳳姚賢宗江孟燦劉興華
口試委員(外文):Chiang, Wen-ChangLin, Bi-FongYao, Hsien-TsungChiang, Meng-TsanLiu, Shing-Hwa
口試日期:2019-07-01
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:66
中文關鍵詞:石花菜石花菜熱水萃物脂質代謝
外文關鍵詞:Gelidium amansiiGelidium amansii hot water extractlipid metabolism
相關次數:
  • 被引用被引用:1
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
肥胖為全球關心的議題,在現代社會中,營養過剩普遍出現在高熱量密度食物與低能量消耗的生活型態中。肥胖是糖尿病、血脂異常、心血管疾病、癌症等疾病的危險因子,如何改善和預防肥胖的發生,成為一個重要的議題。安曼司石花菜 (Gelidium amansii) 為臺灣東北角一帶常見的紅藻,許多研究顯示石花菜萃取物可能具有抑制脂質堆積,降低血漿、肝臟脂質濃度及改善肥胖的能力。
為進一步了解其確切機制,本研究以雄性 Sprague Dawley (SD) 大白鼠進行為期八周的實驗,動物共四組,分別為 (1) 正常控制組 (Normal control diet, NC)、(2) 高脂飲食組 (High fat diet, HF)、(3) 石花菜熱水萃物組 (High fat diet + 5% Gelidium amansii hot-water extract, GHE)、(4) Cholestyramine 組 (High fat diet + 1% Cholestyramine, CH),飼養期間皆採自由攝食。結果顯示,安曼司石花菜熱水萃物可以增加糞便脂質排出,降低血漿中總膽固醇及三酸甘油酯濃度,並改善肝臟及脂肪組織脂質堆積。安曼司石花菜熱水萃物能夠增加膽汁酸從糞便排出,活化肝臟 low density lipoprotein receptor (LDLR) 及 cholesterol 7 alpha-hydroxylase (CYP7A1) 蛋白表現,回收血漿 LDL-C 至肝臟並代謝成膽汁酸,改善血脂濃度。此外,安曼司石花菜熱水萃物藉由活化 AMP-activated protein kinase (AMPK) 及 farnesoid X receptor (FXR) 蛋白表現,抑制下游 acetyl-CoA carboxylase (ACC)、fatty acid synthase (FAS)、3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) 酵素活性及 peroxisome proliferator-activated receptor γ (PPARγ) 蛋白表現來減少肝臟脂質生合成及利用。GHE 促進 peroxisome proliferator-activated receptor α (PPARα) 蛋白表現量,增加肝臟內脂肪酸 β-oxidation。透過提升 microsomal triglyceride transfer protein (MTTP) 的活性,增加三酸甘油酯從肝臟排出,進而減少肝臟脂質堆積。在脂肪組織方面,GHE 可以促進脂解酵素 hormone sensitive lipase (HSL) 活性,減少三酸甘油酯堆積。綜合以上結果顯示,石花菜熱水萃物具有改善高脂飲食大白鼠脂質代謝能力。
Obesity is a global health concern. Nutrient excess marked by ubiquitous food of high palatability and caloric density and life styles requiring low energy output. It is a major risk factor for a number of metabolic diseases such as diabetes, dyslipidemias, cardiovascular disease, and certain cancers. How to improve and prevent the occurrence of obesity has become an important issue. Gelidium amansii is commonly used edible seaweed in Asian countries such as Taiwan, Korea, China and Japan. Recent studies have indicated that Gelidium amansii extract (GHE) may also have potential therapeutic implications for obesity. The extract of Gelidium amansii can inhibit lipid accumulation and reduce plasma and liver lipids. In order to investigate the effects of Gelidium amansii extract on lipid metabolism in rats. Male Sprague-Dawley (SD) rats were divided into 4 groups: (1) normal control diet (NC), (2) high fat diet (HF), (3) high fat diet + 5% Gelidium amansii hot water extract (GHE), and (4) high fat diet + 1% cholestyramine (CH). All the rats were fed the experimental diets and drinking water ad libitum for 8 weeks. The results showed that GHE significantly increased the excretion of lipid in the feces and decreased the levels of serum total cholesterol and triglyceride. It also improved lipid accumulation in liver and adipose tissue. We found that GHE could increase bile acid secretion in feces and activate hepatic low density lipoprotein receptor (LDLR) and cytochrome P450 7A1 (CYP7A1) protein expression. Its mechanisms might be to improve dyslipidemia by increasing clearance of plasma cholesterol and promoting bile acids synthesis from cholesterol in the liver. Moreover, GHE ameliorated hepatic protein levels associated with lipogenesis as well as activation of AMP-activated protein kinase (AMPK) and farnesoid X receptor (FXR), which inhibited the activities of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), HMG-CoA reductase (HMGCR) and eroxisome proliferator-activated receptor γ (PPARγ). Meanwhile, GHE increased β-oxidation of fatty acids by increasing the expressions of peroxisome proliferator activated receptor α (PPARα) in the liver. We also found that GHE could increase hepatic triglyceride excretion and reduced lipid accumulation through increasing microsomal triglyceride transfer protein (MTTP) activation. In adipose tissue, GHE was shown to increase hormone sensitive lipase (HSL) expression, which indicated that GHE reduced lipid accumulation by stimulating lipolysis via HSL elevation. Collectively, the results revealed that GHE may have great potential to improve lipid metabolism in high-fat-diet rats.
壹、 前言 1
貳、 文獻整理 2
一、 肥胖 (Obesity) 2
二、 高脂飲食 (High fat diet) 3
1. 定義 3
2. 實驗動物模式 3
3. 飲食中添加膽固醇與脂質代謝之相關性 4
三、 脂質代謝相關因子 4
1. 相關酵素 4
2. 基因蛋白 5
四、 腸壁黏膜影響 9
1. Mucinase 9
2. β-醛醣酸酶 (β-glucuronidase) 10
五、 石花菜 10
1. 海藻簡介 10
2. 海藻抗肥胖能力 10
3. 安曼司石花菜 (Gelidium amansii) 11
4. 石花菜熱水萃取物的結構與特性 11
5. 石花菜熱水萃取物對脂質代謝之影響 11
六、 藥物介紹 12
1. Cholestyramine 12
2. Cholestyramine 對脂質代謝之影響 12
參、 實驗設計 13
一、 實驗動機與目的 13
二、 實驗流程 13
三、 分析項目 14
四、 實驗材料 15
1. 實驗動物 15
2. 實驗飼料 15
3. 實驗樣品 15
4. 實驗儀器 15
五、 實驗方法 16
1. 實驗動物分組 16
2. 動物飼養與樣品收集 17
3. 飼料配方 17
4. 樣品分析 18
5. 統計分析 30
肆、 結果 31
一、 石花菜熱水萃物成份分析 31
二、 實驗期間大白鼠體重、攝食量和食物利用率之影響 31
三、 實驗結束犧牲時大白鼠組織臟器重量 31
四、 犧牲後大白鼠血漿生化指標測定結果 31
1. 血漿脂質濃度變化 31
2. 血漿 AST、ALT 活性、Adiponectin 及 GLP-1 濃度變化 31
五、 犧牲後大白鼠脂肪組織脂質濃度、脂解速率與 LPL 活性變化 32
六、 犧牲後大白鼠肝臟脂質濃度及脂質合成相關酵素活性測定結果 32
1. 肝臟脂質含量測定 32
2. 肝臟組織切片染色中脂肪空泡差異 32
3. 肝臟脂質合成相關酵素活性變化 32
七、 大白鼠肝臟蛋白質表現量測定結果 32
1. 肝臟 pAMPK/AMPK 及 FXR 之蛋白表現量 32
2. 肝臟 PPARα 及 PPARγ 之蛋白表現量 33
3. 肝臟 LDLR 及 MTTP 之蛋白表現量 33
4. 肝臟 CYP7A1 之蛋白表現量 33
八、 大白鼠糞便重量、糞便脂質排出量及細菌酵素測定結果 33
1. 糞便重量及脂質排出量濃度測定 33
2. 糞便細菌酵素活性測定 33
伍、 討論 34
一、 安曼司石花菜熱水萃物對大鼠體重、攝食量及組織臟器之影響 34
二、 安曼司石花菜熱水萃物對大白鼠血液生化數值之影響 34
三、 安曼司石花菜熱水萃物對大白鼠脂質代謝之影響 35
1. 對血漿脂質濃度之影響 35
2. 對肝臟組織脂質濃度之影響 35
3. 對脂肪組織脂質濃度之影響 36
4. 糞便脂質濃度之影響 37
四、 安曼司石花菜熱水萃物對大白鼠腸道細菌酵素之影響 37
陸、 結論 38
柒、 參考文獻 39
侯松柏。(2007) 數種台灣可食用性藻類之抗氧化評估,國立台灣海洋大學食品科學研究所碩士論文,基隆。台灣。
黃淑芳。(2000) 臺灣東北角海藻圖鑑。國立臺灣博物館。臺北。台灣。
楊宗翰。(2017) 以動物模式探討安曼司石花菜對血脂、血糖及肥胖影響之研究,國立台灣海洋大學食品科學研究所博士論文。基隆。台灣。
衛生福利部,2002a。國人肥胖定義及處理原則出爐。台北。台灣。
衛生福利部,2002b。成人健康體位標準。台北。台灣。
Adam, C. L., Williams, P. A., Dalby, M. J., Garden, K., Thomson, L. M., Richardson, A. J., Gratz, S. W., Ross, A. W. (2014). Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats. Nutrition & Metabolism, 14, 11-36.
Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., Evans, R. M. (2013). PPARγ signaling and metabolism: the good, the bad and the future. Nature Medicine, 99, 557-566.
Allouch, J., Jam, M., Helbert, W., Barbeyron, T., Kloareg, B., Henrissat, B., Czjzek, M. (2003). The three-dimensional structures of two β-agarases. Journal of Biological Chemistry, 278, 47171-47180.
Araki, C. (1956). Structure of the agarose constituent of agar-agar. Bulletin of the Chemical Society of Japan, 29, 543-544.
Asano, T. M., Pollard, M., Madsen, D. (1970). Effects of cholestyramine on l,2-dimethylhydrazine induced enteric carcinoma in germfree rats. Proceedings of the Society for Experimental Biology and Medicine, 150, 780-5.
Bennett, A. J., Bruce, J. S., Salter, A. M., White, D. A., Billett, M. A. (1996). Hepatic microsomal triglyceride transfer protein messenger RNA concentrations are increased by dietary cholesterol in hamsters. FEBS Letters, 394, 247-250.
Berger, J. J., and Barnard, R. J. (1999). Effect of diet on fat cell size and hormone-sensitive lipase activity. Journal of Applied Physiology, 87, 227-232.
Blundell, J. E., Naslund, E. (1999). Glucagon-like peptide-1, satiety and appetite control. British Journal of Nutrition, 81, 259-260.
Blundell, J. E., Stubbs, R. J. (1999). High and low carbohydrate and fat intakes: limits imposed by appetite and palatability and their implications for energy balance. European Journal of Clinical Nutrition, 53, S148-S165.
Brown, M. S., Goldstein, J. L. (1976). Receptor-mediated control of cholesterol metabolism. Science, 191, 150-154.
Buettner, R., Parhofer, K. G., Woenckhaus, M., Wrede, C. E., Kunz-Schughart, L. A., Schölmerich, J., Bollheimer, L. C. (2006). Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. Journal of Molecular Endocrinology, 36, 485-501.
Buettner, R., Schölmerich, J., Bollheimer, L. C. (2007). High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity, 15, 798-808.
Cani, P. D., Dewever, C., Delzenne, N. M. (2004). Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. British Journal of Nutrition, 92, 521-526.
Cariou, B., Staels, B. (2007). FXR: a promising target for the metabolic syndrome? Trends in Pharmacological Sciences, 5, 236-243.
Carlson, S. E., Goldfarb, S. (1977). A sensitive enzymatic method for determination of free and esterified tissue cholesterol. Clinica Chimica Acta, 79, 575-582.
Cassidy, M. M., Lightfoot, F. G., Grau, L. E., Roy, T., Story, J. A., Kritchevsky, D., Vahouny, G. V. (1980). Effect of bile salt-binding resins on the morphology of rat jejunum and colon. Digestive Diseases and Sciences, 25, 504-512.
Chawla, A., Saez, E., Evans, R. M. (2000). Don't know much bile-ology. Cell, 103, 1-4.
Chen, Y. D., Risser, T. R., Cully, M., Reaven, G. M. (1979). Is the hypertriglyceridemia associated with insulin deficiency caused by decreased lipoprotein lipase activity? Diabetes, 28, 893-898.
Chen, Y. H., Tu, C. J., Wu, H. T. (2004). Growth-inhibitory effects of the red alga Gelidium amansii on cultured cells. Biological and Pharmaceutical Bulletin, 27, 180-184.
Chiang, J. Y. (2009). Bile acids: regulation of synthesis. The Journal of Lipid Research, 50, 1955-1966.
Chiu, C. Y., Chan, I. L., Yang, T. H., Liu, S. H., Chiang, M. T. (2015). Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes. Journal of Agricultural and Food Chemistry, 63, 2979-2988.
Choi, J., Kim, K. J., Koh, E. J., Lee, B. Y. (2017). Gelidium elegans Regulates the AMPK-PRDM16-UCP-1 Pathway and Has a Synergistic Effect with Orlistat on Obesity-Associated Features in Mice Fed a High-Fat Diet. Nutrients, 9, doi: 10.3390.
Clark, M. J., Slavin, J. L. (2013). The effect of fiber on satiety and food intake: a systematic review. Journal of the American College of Nutrition, 32, 200-211.
Cockcroft, J. R., Chowienczyk, P. J., Ritter, J. M., Lehmann, E. D., Hopkins, K. D., Parker, J. R., Gosling, R. G. (1995). Hyperlipidaemia, hypertension, and coronary heart disease. The Lancet, 345, 862-863.
Costa, M. A., Mehta, T., Males, J. R. (1989). Effects of dietary cellulose, psyllium husk and cholesterol level on fecal and colonic microbial metabolism in monkeys. The Journal of Nutrition, 119, 986-992.
Darlington, G. J., Ross, S. E., MacDougald, O. A. (1998). The role of C/EBP genes in adipocyte differentiation. The Journal of Biological Chemistry, 273, 30057-30060.
Delzenne, N. M., Cani, P. D. (2005). A place for dietary fibre in the management of the metabolic syndrome. Current Opinion in Clinical Nutrition and Metabolic Care, 8, 636-640.
Department of Health and Human Services and Department of Agriculture. (2015). 2015-2020 Dietary guidelines for Americans 8th edition. Retrieved August 13, 2018, from https://health.gov/dietaryguidelines/2015/guidelines/
Desvergne, B., Wahli, W. (1999). Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews, 20, 649-688.
Ding, L., Yang, L., Wang, Z., Huang, W. (2015). Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharmaceutica Sinica B, 5, 135-144.
Drewnowski, A. (1998). Energy density, palatability, and satiety: implications for weight control. Nutrition Reviews, 56, 347-353.
Duckworth, M., Yaphe, W. (1971). The structure of agar: Part I. fractionation of a complex mixture of polysaccharides. Carbohydrate Research, 16, 189-197.
Edholm, T., Degerblad, M., Grybäck, P., Hilsted, L., Holst, J. J., Jacobsson, H., Efendic, S., Schmidt, P. T., Hellström, P. M. (2010). Differential incretin effects of GIP and GLP-1 on gastric emptying, appetite, and insulin‐glucose homeostasis. Neurogastroenterology and Motility, 22, 1191-1201.
Eo, H., Jeon, Y. J., Lee, M., Lim, Y. (2015). Brown Alga Ecklonia cava polyphenol extract ameliorates hepatic lipogenesis, oxidative stress, and inflammation by activation of AMPK and SIRT1 in high-fat diet-induced obese mice. Journal of Agricultural and Food Chemistry, 63, 349-359.
Eriyamremu, G. E., Adamson, I. (1995). Alterations in rat colonic faeces exposed to an acute level of deoxycholate and fed on a Nigerian-like diet. Nutrition Research, 15, 869-880.
Fabbrini, E., Sullivan, S. and Klein, S. (2010). Obesity and nonalcoholic fatty liver disease: biochemical, metabolic and clinical implications. Hepatology, 51, 679-689.
Folch, J., Lees, M., Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226, 497-509.
Forman, B. M., Goode, E., Chen, J., Oro, A. E., Bradley, D. J., Perlmann, T., Noonan, D. J., Burka, L. T., McMorris, T., Lamph, W. W., Evans, R. M., Weinberger, C. (1995). Identification of a nuclear receptor that is activated by farnesol metabolites. Cell, 81, 687-693.
Fungwe, T. V., Cagen, L., Wilcox, H. G., Heimberg, M. (1992). Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. Journal of Lipid Research, 33, 179-191.
Gaidhu, M. P., Anthony, N. M., Patel, P., Hawke, T. J., Ceddia, R. B. (2010). Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. American Journal of Physiology-Cell Physiology, 298, C961-C971.
Gavrilova, O., Haluzik, M., Matsusue, K., Cutson, J. J., Johnson, L., Dietz, K. R., Nicol, C. J., Vinson, C., Gonzalez, F. J., Reitman, M. L. (2003). Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. The Journal of Biological Chemistry, 278, 34268-34276.
Gleeson, A., Anderton, K., Owens, D., Bennett, A., Collins, P., Johnson, A., White, D., Tomkin, G. H. (1999). The role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes. Diabetologia, 42, 944-948.
Goldstein, J. L., Brown, M. S. (2009). The LDL receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 431-438.
Han, A. R., Kim, S. W., Chun, S. H., Nam, M. H., Hong, C. O., Kim, B. H., Kim, T. C., Lee, K. W. (2016). Effect of diet containing whole wheat bread with capsosiphon fulvescens and lindera obtusiloba ethanol extracts on plasma glucose and lipid levels in rats. Korean Journal of Food Science and Technology, 48, 178–186.
Hardie, D. G., Carling, D. (1997). The AMP activated protein kinase: fuel gauge of the mammalian cell? European Journal of Biochemistry, 246, 259-273.
Hardie, D. G. (2004). The AMP-activated protein kinase pathway--new players upstream and downstream. Journal of Cell Science, 117, 5479-5487.
Horton, J. D., Goldstein, J. L, Brown, M. S. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation, 109, 1125-1131.
Hsu, C. S., Kao, J. H. (2012). Non-alcoholic fatty liver disease: an emerging liver disease in Taiwan. Journal of the Formosan Medical Association, 111, 527-535.
Jenab, M., Thompson, L. U. (1996). The influence of flaxseed and lignans on colon carcinogenesis and β-glucuronidase activity. Carcinogenesis, 17, 1343–1348.
Jocken, J. W., Langin, D., Smit, E., Saris, W. H., Valle, C., Hul, G. B., Holm, C., Arner, P., Blaak, E. E. (2007). Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. The Journal of Clinical Endocrinology & Metabolism, 189, 13-20.
Kamisako, T., Ogawa, H., Yamamoto, K. (2007). Effect of cholesterol, cholic acid and cholestyramine administration on the intestinal mRNA expressions related to cholesterol and bile acid metabolism in the rat. Journal of Gastroenterology and Hepatology, 22, 1832-1837.
Kang, M. C., Kang, N., Kim, S. Y., Lima, I. S., Ko, S. C., Kim, Y. T., Kim, Y. B., Jeung, H. D., Choi, K. S., Jeon, Y. J. (2016). Popular edible seaweed, Gelidium amansii prevents against diet-induced obesity. Food and Chemical Toxicology, 90, 181-187.
Kang, J. H., Lee, H. A., Kim, H. J., Han, J. S. (2017). Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice. Nutrition Research and Practice, 11, 17-24.
Kota, B. P., Huang, T. H., Roufogalis, B. D. (2005). An overview on biological mechanisms of PPARs. Pharmacological Research, 51, 85-94.
Kraemer, F. B., Shen, W. J. (2002). Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. The Journal of Lipid Research, 43, 1585-1594.
Kusunoki, M., Hara, T., Tsutsumi, K., Nakamura, T., Miyata, T., Sakakibara, F., Sakamoto, S., Ogawa, H., Nakaya, Y., Storlien, L. H., (2000). The lipoprotein lipase activator, NO-1886, suppresses fat accumulation and insulin resistance in rats fed a high-fat diet. Diabetologia, 43, 875-880.
Krüner, G. and Westernhagen, H. V. (1999). Sources of measurement error in assays of EROD activity of fish for biological effects monitoring. Helgoland Marine Research, 53, 250-256.
Lambert, G., Amar, M. J., Guo, G., Brewer, H. B. Jr., Gonzalez, F. J. Sinal, C. J. (2003). The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. The Journal of Biological Chemistry, 278, 2563-2570.
Lazar, M. A. (2005). PPAR gamma, 10 years later. Biochimie, 87, 9-13.
Lee, W. J., Kim, M., Park, H. S., Kim, H. S., Jeon, M. J., Oh, K. S., Koh, E. H., Won, J. C., Kim, M. S., Oh, G. T., Yoon, M., Lee, K. U., Park, J .Y. (2006). AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1. Biochemical and Biophysical Research Communications, 340, 291-295.
Lehrke, M., Lazar, M. A. (2005). The many faces of PPARgamma. Cell, 123, 993-999.
Leren, T. P. (2014). Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis, 237, 76-81.
Liu, L., Ouyang, D. (2009). Function and clinical significance of microsomal triglyceride transfer protein. International Journal of Clinical and Experimental Pathology, 29, 152-154.
Manoj, G., Thampi, B. S., Leelamma, S., Menon, P. V. (2001). Effect of dietary fiber on the activity of intestinal and fecal beta-glucuronidase activity during 1,2-dimethylhydrazine induced colon carcinogenesis. Plant Foods for Human Nutrition, 56, 13-21.
Mashige, F., Tanaka, N., Maki, A., Kamei, S., Yamanaka, M. (1981). Direct spectrophotometry of total bile acids in serum. Clinical Chemistry, 27, 1352-1356.
Matsumoto, K., Yokoyama, S. (2010). Gene expression analysis on the liver of cholestyramine-treated type 2 diabetic model mice. Biomedicine & Pharmacotherapy, 64, 373-378.
McRorie, J., Fahey, G. (2015). Chapter 8: Fiber supplements and clinically meaningful health benefits: Identifying the physiochemical characteristics of fiber that drive specific physiologic effects. In: Taylor C, ed. The CRC Handbook on Dietary Supplements in Health Promotion. Florence, KY: CRC Press.
McRorie, J. W.; McKeown, N. M. (2017). Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. Journal of the Academy of Nutrition and Dietetics, 117, 251-264.
Modica, S., Gadaleta, R. M., Moschetta, A. (2010). Deciphering the nuclear bile acid receptor FXR paradigm. Nuclear Receptor Signaling, 8, e005.
Moran‐Ramos, S., Tovar, A. R., Torres, N. (2012). Diet: friend or foe of enteroendocrine cells–how it interacts with enteroendocrine cells. Advances in Nutrition, 3, 8- 20.
Mosca, C. L., Marshall, J. A., Grunwald, G. K., Cornier, M. A., Baxter, J. (2004). Insulin resistance as a modifier of the relationship between dietary fat intake and weight gain. International Journal of Obesity, 28, 803-812.
National Taiwan Museum. (1980) Gelidium amansii. Retrieved August 09, 2018, from https://en.ntm.gov.tw/
Nepokroeff, C. M., Lakshmanan, M. R., Porter, J. W. (1975). Fatty acid synthase from rat liver. Methods in Enzymology, 35, 37-44.
Nieto, M. B. (2009). Structure and function of polysaccharide gum-based edible films and coatings. In: Edible films and coatings for food applications, New York. Springer, 61-62.
Nishimura, N., Umeda, C., Oda, H., Yokogoshi, H. (2003). The effect of taurine on the cholesterol metabolism in rats fed diets supplemented with cholestyramine or high amounts of bile acid. Journal of Nutritional Science and Vitaminology, 49, 21-26.
Nyblom, H., Berggren, U., Balldin, J., Olsson, R. (2004). High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol and Alcoholism, 39, 336-339.
O'Neill, L. A., Hardie, D. G. (2013). Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature, 493, 346-355.
Pagano, C., Soardo, G., Esposito, W., Fallo, F., Basan, L., Donnini, D., Federspil, G., Sechi, L. A., Vettor, R. (2005). Plasma adiponectin is decreased in nonalcoholic fatty liver disease. European Journal of Endocrinology, 152, 113-118.
Park, M. H., Kang, J. H., Kim, H. J., Han, J. S. (2017). Gelidium amansii ethanol extract suppresses fat accumulation by down-regulating adipogenic transcription factors in ob/ob mice model. Food Science and Biotechnology, 26, 207-212.
Patten, R. L. (1970). The reciprocal regulation of lipoprotein lipase activity and hormone-sensitive lipase activity in rat adipocytes. Journal of Biological Chemistry, 245, 5577-5584.
Patterson, A. D., Shah, Y. M., Matsubara, T., Krausz, K. W., Gonzalez, F. J. (2012). Peroxisome proliferator-activated receptor alpha induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity. Hepatology, 56, 281-290.
Pereira, I. V., Stefano, J. T., Oliveira, C. P. (2011). Microsomal triglyceride transfer protein and nonalcoholic fatty liver disease. Expert Review of Gastroenterology & Hepatology, 5, 245-251.
Perlemuter, G., Sabile, A., Letteron, P., Vona, G., Topilco, A., Chrétien, Y., Koike, K., Pessayre, D., Chapman, J., Barba, G., Bréchot, C. (2002). Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. The FASEB Journal, 16, 185-194.
Peters, J. M., Hennuyer, N., Staels, B., Fruchart, J. C., Fievet, C., Gonzalez, F. J., Auwerx, J. (1997). Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. The Journal of Biological Chemistry, 272, 27307-27312.
Phillips, C., Owens, D., Collins, P., Tomkin, G. H. (2002). Microsomal triglyceride transfer protein: does insulin resistance play a role in the regulation of chylomicron assembly? Atherosclerosis, 160, 355-360.
Pineda Torra, I., Claudel, T., Duval, C., Kosykh, V., Fruchart, J. C., Staels, B. (2003). Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor. Molecular Endocrinology, 17, 259-72.
Roth, G., Leitzmann, C. (1985). Fiber and the large gut. In: Dietary perspectives reviews and bibliography. Libbey, J. publ., London. pp. 3-22.
Russell, D. W. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annual Review of Biochemistry, 72, 137-174.
Rutter, G. A., Da Silva Xavier, G., Leclerc, I. (2003). Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochemical Journal, 375, 1-16.
Sakata, T. (1986). Effects of indigestible dietary bulk and short chain fatty acids on the tissue weight and epithelial cell proliferation rate of the digestive tract in rats. Journal of Nutritional Science and Vitaminology, 32, 355-362.
Salminen, S., Isolauri, E., Salminen, E. (1996). Probiotics and stabilisation of the gut mucosal barrier. Asia Pacific Journal of Clinical Nutrition, 5, 53-56.
Samiey, B. and Ashoori, F. (2012). Adsorptive removal of methylene blue by agar: effects of NaCl and ethanol. Chemistry Central Journal, 6.1-14.
Savkur, R. S., Bramlett, K. S., Michael, L. F., Burris, T. P. (2005). Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor. Biochemical and Biophysical Research Communications, 329, 391-396.
Scaldaferri, F., Pizzoferrato, M., Ponziani, F. R., Gasbarrini, G., Gasbarrini, A. (2013). Use and indications of cholestyramine and bile acid sequestrants. Internal and Emergency Medicine, 8, 205-210.
Schoonjans, K., Staels, B., Auwerx, J. (1996). Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. The Journal of Lipid Research, 37, 907-925.
Shefer, S., Hauser, S., Lapar, V., Mosbach, E. H. (1973). Regulatory effects of sterols and bile acids on hepatic 3-hydroxy-3-methylglutaryl CoA reductase and cholesterol 7alpha-hydroxylase in the rat. The Journal of Lipid Research, 14, 573-580.
Shiau, S. Y. and Chang, G. W. (1983). Effects of dietary fiber on fecal mucinase and beta-glucuronidase activity in rats. The Journal of Nutrition, 113, 138-144.
Singh, T. (1992). Agar and agar production. Infofish, 7, 1-25.
Smithson, K. W., Millar, D. B., Jacobs, L. R., Gray, G. M. (1981). Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat? Science, 214, 1241-1244.
Steinberg, G. R. and Kemp, B. E. (2009). AMPK in health and disease. Physiological Reviews, 89, 1025-1078.
Stryer, L. (1998). Biochemistry 3rd edn. Academic press, USA.
Takehisa, F., Suzuki, Y., (1990). Effect of guar gum and cholestyramine on plasma lipoprotein cholesterol in rats. The Japanese Society for Food Science and Technology, 43, 269-274.
Tang, Z., Gao, H., Wang, S., Wen, S., Qin, S. (2013). Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. International Journal of Biological Macromolecules, 58, 186-189.
Teodoro, J. S., Rolo, A. P., Palmeira, C. M. (2011). Hepatic FXR: key regulator of whole-body energy metabolism. Trends in Endocrinology and Metabolism, 22, 458-466.
Terra, X., Montagut, G., Bustos, M., Llopiz, N., Ardèvol, A., Bladé, C., Fernández-Larrea, J., Pujadas, G., Salvadó, J., Arola, L., Blay, M., Ardevol, A., Blade, C., Fernández-Larrea, J., Pujadas, G., Salvadó, J., Arola, L., Blay, M. (2009). Grape-seed procyanidins prevent low-grade inflammationby modulating cytokine expression in rats fed a high-fat diet. The Journal of Nutritional Biochemistry, 20, 210-218.
Voshol, P. J., Rensen, P. C., van Dijk, K. W., Romijn, J. A., Havekes, L. M. (2009). Effect of plasma triglyceride metabolism on lipid storage in adipose tissue: studies using genetically engineered mouse models. Biochimica et Biophysica Acta, 1791, 479-485.
Weber, L. W., Boll, M., Stampfl, A. (2004). Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins. World Journal of Gastroenterology, 10, 3081-3087.
Westerterp-Plantenga, M. S. (2001). Analysis of energy density of food in relation to energy intake regulation in human subjects. British Journal of Nutrition, 85, 351-361.
Williams, S. E., Turnberg, L. A. (1980). Retardation of acid diffusion by pig gastric mucosa: a potential role in mucosal protection. Gastroenterology, 79, 299-304.
World Health Organization. (2004) Body mass index - BMI. Retrieved August 13, 2018, from http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
World Health Organization. (2011) Global Health Observatory (GHO) data. - Mean Body Mass Index (BMI) Retrieved August 13, 2018, from http://www.who.int/gho/ncd/risk_factors/bmi_text/en/
World Health Organization. (2018) Obesity and overweight. Retrieved August 13, 2018, from http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
Woo, M. S., Choi, H. S., Lee, O. H., Lee, B. Y. (2013). The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells. Phytotherapy Research, 27, 1102-1105.
Yang, T. H., Yao, H. T., Chiang, M. T. (2015). Red algae (Gelidium amansii) reduces adiposity via activation of lipolysis in rats with diabetes induced by streptozotocin-nicotinamide. Journal of Food and Drug Analysis, 23, 758-765.
Yang, T. H., Yao, H. T., Chiang, M. T. (2017). Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet. Journal of Food and Drug Analysis, 25, 931-938.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top