跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊龍
研究生(外文):Chen, Chun-Lung
論文名稱:複合菌株發酵豆粕產品對於高脂飼料餵食大鼠之抗肥胖活性評估
論文名稱(外文):Evaluation of the anti-obesity activity ofco-cultured fermented soybean meal products using rats fed with high fat diet
指導教授:蔡國珍
指導教授(外文):Tsai, Guo-Jane
口試委員:蘇南維鄭光成吳彰哲
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:93
中文關鍵詞:豆粕複合菌株發酵降低脂質累積抗肥胖
外文關鍵詞:soybean mealcompound strain fermentationlipid accumulation reductionanti-obesity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
豆粕由於蛋白質含量高、價廉且供應穩定, 為重要蛋白質供應者,已知去醣基大豆異黃酮及胜肽具抗肥胖活性。本研究分別以 Lactobacillus sp. FPS 2520 及 Bacillus sp. N1菌株進行單株及混合菌株液態發酵豆粕,探討發酵豆粕產品之抗肥胖活性。以五週齡 Sprague-Dawley 大鼠,隨機分為 9 組:(1) Normal diet 組 (ND),其餘八組以高脂飼料誘導肥胖分為 (2) High-Fat diet 控制組 (HFD),(3) HFD + 未發酵豆粕 1000 mg/kg 組 (SM 1000),(4) 和 (5) HFD + FPS 2520 發酵產品,劑量分別為 500、1000 mg/kg 組 (FPS 500、FPS 1000),(6) 和 (7) HFD + N1 發酵產品,劑量分別為 500、1000 mg/kg 組 (N1 500、N1 1000),(8) 和 (9) HFD + 複合菌株發酵產品,劑量分別為 500、1000 mg/kg 組 (Mix 500、Mix 1000),SD 大鼠經十週高脂飼料誘導肥胖後,餵食各測試樣品六週,顯示各實驗組除了 SM 1000 組外,體重均顯著低於HFD組,尤以 Mix 1000 組下降最大,與 ND 組相近。大鼠腹部及副睪脂肪含量變化亦和體重變化相似且具劑量依賴性,Mix 1000 組之腹部及副睪脂肪量分別比 HFD 組下降 47.7% 及 41.1%。各測試發酵產物均顯著降低血漿中三酸甘油脂及總膽固醇含量,Mix 1000 組比HFD 組下降 11.1% 及 29.8%。各測試發酵產物均降低血漿中 Alanine aminotransferase (ALT)、Aspartate aminotransferase (AST) 及 Creatinine 濃度。此外,各式菌株發酵產物均可降低脂肪酸合成酶 (FAS)、乙醯輔酶 A 羧化酶 (ACC) 酵素活性及增加荷爾蒙敏感性脂解酶 (HSL)、脂蛋白脂肪酶 (LPL) 酵素活性,且均以 Mix 1000 組的效果最大。綜合上述,由 FPS 2520 及 N1單株或複合菌株發酵所得豆粕均具降低脂質累積能力之抗肥胖活性,其中尤以複合菌株發酵的效果最顯著。
Because of its high protein content, low cost and stable supply, soybean meal (SBM) is an important protein source. It is known that deglycosyl soy isoflavones and peptides have anti-obesity activity. In this study, the single strain or mixed strains of Lactobacillus sp. FPS 2520 and Bacillus sp. N1 were used to ferment SBM, and the anti-obesity activity of the fermented SBM products were investigated using a high fat-induced animal model. Five-week-old Sprague-Dawley rats were randomly divided into 9 groups: (1) Normal diet group (ND), and the remaining 8 groups were divided into high-fat diet-induced obesity including (2) High-Fat diet control group (HFD), ( 3) HFD + unfermented soybean meal 1000 mg/kg group (SM 1000), (4) & (5) HFD + FPS 2520 fermented products at dosage of 500 and 1000 mg/kg, respectively, (FPS 500, FPS 1000), (6) & (7) HFD + N1 fermented products at dosage of 500 and 1000 mg/kg, respectively, (N1 500, N1 1000), (8) & (9) HFD + mixed strain fermented products at dosage of 500 and 1000 mg/kg, respectively, (Mix 500, Mix 1000), SD rats were successfully induced to become obesity after 10 weeks of induction by high fat diet, and then, the various tested fermented products were orally ingested by 6 weeks. Except the SM 1000 group, the body weight gains for the rest experimental groups were significantly lower than that of HFD group, among which Mix 1000 group being the lowest, with 25.8% reduction, compared to that of HFD. The changes for abdominal fat weight and epididymis fat weight were also similar to that of body weight gain, with Mix 1000 group being lowest, with 47.7% and 41.1% reduction, respectively, compared to those of HFD. All the tested fermented products significantly reduced the levels of plasma triglyceride and total cholesterol with 11.1% and 29.8% reduction were obtained for Mix 1000 group, compared to HFD group. Similarly, the plasma alanine aminotransferase (ALT), Aspartate aminotransferase (AST) and creatinine levels were decreased for all experimented groups. The activity of fatty acid synthase (FAS) and acetyl CoA carboxylase (ACC) in liver were significantly decreased, and the activity of hormone sensitive lipase (HSL) and lipoprotein lipase (LPL) in adipose tissue were significantly decreased, for the groups fed with fermented SBM, with Mix 1000 group being most. In summary, the fermented SBM by either FPS 2520 or N1 were demonstrated to have anti-obesity activity, with mix strain fermented SBM being the most.
目錄
壹、前言 2
貳、文獻回顧 3
1. 肥胖 3
1-1.肥胖的成因 3
1-2.脂肪組織與肥胖 4
1-3.脂質與人體間之關係 5
1-4.肥胖者體內代謝異常之情況 5
1-5.脂肪組織中脂質代謝相關酵素 6
1-5-1. 荷爾蒙敏感性脂解酶 (Hormone-sensitive lipase, HSL) 6
1-5-2. 脂蛋白脂解酶 (Lipoprotein lipase, LPL) 6
1-6.肥胖者易罹患的疾病與其死亡率 7
2. 黃豆與豆粕 8
3. 黃豆和黃豆食品中之化學成分 9
參、實驗設計 12
肆、實驗材料與方法 14
一、 實驗材料 14
1. 原料 14
2. 實驗菌株 14
3. 化學藥品 14
4. 實驗動物 14
5. 實驗動物飼料 14
6. 動物實驗試劑套組 15
7. 動物組織切片 15
二、 儀器設備 15
三、 實驗方法 16
1. 菌種保存 16
2. 菌種活化 17
3. 樣品製備與分析 17
3-1. Lactobacillus sp. FPS 2520單株發酵 17
3-2. Bacillus sp. N1單株發酵 17
3-3. 複合菌株發酵 17
3-4. 異黃酮萃取 17
3-5. 異黃酮分析 18
4. 動物飼養與分組 18
5. 動物犧牲與取樣分析 19
5-1. 血液分析 19
5-1-1. 血漿中葡萄糖濃度測定 19
5-1-2. 血漿中總膽固醇濃度測定 19
5-1-3. 血漿中三酸甘油酯濃度測定 20
5-1-4. 血漿中脂蛋白 (Lipoprotein) 分離與含量測定 20
5-1-5. 血漿蛋白濃度測定 21
5-1-6. 血漿中胰島素含量測定 21
5-1-7. 血漿中 2-thiobarbituric acid reactive substances (TBARS) 含量測定 22
5-1-8. 血漿中天門冬氨酸胺基轉胺酶 (Aspartate aminotransferase, AST) 及丙氨酸胺基轉胺酶 (Alanine aminotransferase, ALT) 活性測定 23
5-2. 肝臟分析 24
5-2-1. 肝臟脂質萃取 24
5-2-2. 肝臟總膽固醇及三酸甘油酯含量測定 25
5-2-3. 肝臟中 2-thiobarbituric acid reactive substances (TBARS) 含量測定 25
5-2-4. 肝臟酵素活性測定 25
5-3. 脂肪分析 28
5-3-1. 脂肪細胞質液製備 28
5-3-2. 荷爾蒙敏感性脂解酶 (Hormone sensitivity lipase, HSL) 含量測定 28
5-3-3. 脂蛋白脂解酶 (Lipoprotein lipase, LPL) 含量測定 30
5-4. 組織病理學切片 31
5-4-1. 組織切片之固定 31
5-4-2. 組織脫水及石蠟包埋 31
5-4-3. 石蠟切片 31
5-4-4. 切片染色 31
6. 統計分析 32
伍、結果與討論 33
一、口服葡萄糖耐受性試驗 (Oral glucose tolerance test, OGTT) 33
1. 大鼠餵食不同飼料六週後口服葡萄糖耐受性測試之血糖變化 33
二、大鼠攝食量、飲水量、體重及組織臟器重量變化 34
1. 實驗期間攝食量及飲水量變化情形 34
2. 實驗犧牲前後大鼠外觀變化情形 34
3. 實驗期間各週體重及體重變化量 35
4. 大鼠組織臟器重量及脂肪重量變化 36
三、大鼠血漿生化指標 37
1. 給予不同實驗樣品六週後大鼠犧牲之血糖相關參數 37
2. 給予不同實驗樣品六週後大鼠犧牲之血脂相關參數 38
3. 給予不同實驗飼料六週後大鼠犧牲血漿之脂質過氧化物數值 38
4. 給予不同實驗飼料六週後大鼠肝腎功能之評估 39
四、大鼠肝臟生化指標 40
1. 給予不同實驗飼料六週後大鼠犧牲之肝臟脂質相關參數 40
2. 給予不同實驗飼料六週後大鼠犧牲肝臟之脂質過氧化物數值 40
3. 給予不同實驗飼料六週後大鼠肝臟脂質代謝酵素分析 41
五、大鼠脂肪組織酵素分析 42
六、大鼠肝臟組織病理學切片 42
陸、結論 44
柒、參考文獻 45


圖目錄
圖一、大鼠攝取不同實驗飼料六週之口服葡萄糖耐受性試驗血糖變化。 55
圖二、試驗期間大鼠攝取不同飼料之每週平均攝食量。 59
圖三、試驗期間大鼠攝取不同飼料之每週平均飲水量。 60
圖四、攝取不同樣品六週後之大鼠外型 (A) 及腹部脂肪組織圖 (B)。 61
圖五、試驗期間大鼠體重變化。 62
圖六、大鼠起始、最終體重及體重增加量。 63
圖七、大鼠攝取不同實驗飼料六週之組織臟器重量。 64
圖八、大鼠攝取不同實驗飼料六週之組織臟器重量。 65
圖九、大鼠攝取不同實驗飼料六週之脂肪組織重量。 66
圖十、大鼠攝取不同實驗飼料六週之脂肪組織重量。 67
圖十一、肥胖大鼠餵食含樣品之飼料六週後之血糖含量。 68
圖十二、肥胖大鼠餵食含樣品之飼料六週後之胰島素含量。 69
圖十三、肥胖大鼠餵食含樣品之飼料六週後之血漿三酸甘油酯、總膽固醇及脂蛋白膽固醇含量。 70
圖十四、肥胖大鼠餵食含樣品之飼料六週後之血漿脂質過氧化數值。 71
圖十五、大鼠攝取不同飼料六週之血漿 AST 含量。 72
圖十六、大鼠攝取不同飼料六週之血漿 ALT 含量。 73
圖十七、大鼠攝取不同飼料六週之血漿 CREATININE 含量。 74
圖十八、大鼠攝取不同飼料六週之血漿 URIC ACID 含量。 75
圖十九、肥胖大鼠餵食含樣品之飼料六週後之肝臟三酸甘油酯、總膽固醇含量。 76
圖二十、肥胖大鼠餵食含樣品之飼料六週後之肝臟脂質過氧化數值。 77
圖二十一、肥胖大鼠餵食含樣品之飼料六週後之肝臟脂肪酸合成酶含量。 78
圖二十二、肥胖大鼠餵食含樣品之飼料六週後之肝臟乙醯輔酶 A 羧化酶含量。 79
圖二十三、肥胖大鼠餵食含樣品之飼料六週後腹部脂肪組織荷爾蒙敏感脂解酶含量。 80
圖二十四、肥胖大鼠餵食含樣品之飼料六週後腹部脂肪組織脂蛋白脂肪酶含量。 81
圖二十五、肥胖大鼠餵食含樣品之飼料六週後以 H&E 染色觀察肝臟組織切片(10X×20X)。 82




表目錄
表一、實驗飼料組成 (%)。 83

附錄
附錄一、異黃酮標準品 (A)、未發酵豆粕液 (B)、以 LACTOBACILLUS SP. FPS 2520 發酵豆粕懸浮液 24 小時 (C)、72 小時 (F)、以 BACILLUS SP. N1發酵豆粕懸浮液 24 小時 (D)、72 小時 (G)、複合菌株發酵豆粕懸浮液 24 小時 (E)、72 小時 (H) 異黃酮含量之 HPLC 圖譜。 84
附錄二、以不同菌株發酵豆粕懸浮液 72 小時之游離胺基態氮、總胜肽及異黃酮含量變化。 85
附錄三、實驗飼料礦物質組成。 86
附錄四、實驗飼料維生素組成。 87
附錄五、大鼠攝取不同實驗飼料六週之組織臟器及脂肪組織重量。 88
附錄六、肥胖大鼠餵食含樣品之飼料六週後之血漿三酸甘油酯、總膽固醇、脂蛋白膽固醇含量及脂質過氧化數值。 89
附錄七、肥胖大鼠餵食含樣品之飼料六週後之血漿 AST、ALT、肌酸酐及尿酸含量。 90
附錄八、肥胖大鼠餵食含樣品之飼料六週後之肝臟三酸甘油酯、總膽固醇含量及脂質過氧化數值。 91
附錄九、肥胖大鼠餵食含樣品之飼料六週後之肝臟脂肪酸合成酶及乙醯輔酶 A 羧化酶含量。 92
附錄十、肥胖大鼠餵食含樣品之飼料六週後腹部脂肪組織荷爾蒙敏感脂解酶及脂蛋白脂肪酶含量。 93
行政院衛生福利部國民健康署。(2018)。每日飲食指南手冊。https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1208。
謝承哲。(2018)。利用 Lactobacillus sp. FPS 2520 和 Bacillus sp. N1 菌株發酵豆粕開發飼料營養添加劑及利用細胞模式探討發酵產品之抗肥胖和促進葡萄糖吸收活性。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。
鍾昀峰。(2016)。複合菌株發酵黃豆製品開發功能性魚類飼料添加劑。國立臺灣海洋大學食品科學 系碩士學位論文。基隆。臺灣。
Ahmad, F., Ahmad, P. M., Dickstein, R. & Greenfield, E. D. (1981). Detection of ligand-induced perturbations affecting the biotinyl group of mammalian acetyl-coenzyme A carboxylase by using biotin binding antibodies. Biochemical Journal, 197: 95-104.
Albertazzi, P., & Purdie, D. W. (2002). The nature and utility of the phytoestrogens: a review of the evidence. Maturitas, 42(3): 173-185.
Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W. & Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical Chemistry, 20: 470-475.
Arcaro, G., Zamboni, M., Rossi, L., Turcato, E., Covi, G., Armellini, F., ... & Lechi, A. (1999). Body fat distribution predicts the degree of endothelial dysfunction in uncomplicated obesity. International Journal of Obesity, 23(9), 936.
Ashakumary, L., Rouyer, I., Takahashi, Y., Ide, T., Fukuda, N., Aoyama, T., ... & Sugano, M. (1999). Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism, 48(10), 1303-1313.
Assmann, G., Schriewer, H., Schmitz, G. and Hägele, E. O. (1983). Quantification of high-density-lipoprotein cholesterol by precipitation with phosphotungstic acid/MgCl2. Clinical Chemistry, 29: 2026-2030.
Bar, R. S., Harrison, L. C., Muggeo, M., Gorden, P., Kahn, C. R., & Roth, J. (1979). Regulation of insulin receptors in normal and abnormal physiology in humans. Advances in Internal Medicine, 24, 23-52.
Barnes, S. (2010). The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphatic Research and Biology, 8(1): 89-98.
Bartels, H., Bohmer, M. & Heierli, C. (1972). Serum creatinine determination without protein precipitation. Clinica Chemica Acta, 37: 193-197.
Behloul, N. & Wu, G. (2013). Genistein: a promising therapeutic agent for obesity and diabetes treatment. European Journal of Pharmacology, 698, 31–38.
Berger, J. J. & Barnard, R. J. (1999). Effect of diet on fat cell size and hormone-sensitive lipase activity. Journal of Applied Physiology, 87: 227-232.
Bergö, M., Olivecrona, G. & Olivecrona, T. (1996). Forms of lipoprotein lipase in rat tissues: In adipose tissue the proportion of inactive lipase increases on fasting. Biochemical Journal, 313: 893-898.
Berman, D. M., Rodrigues, L. M., Nicklas, B. J., Ryan, A. S., Dennis, K. E., & Goldberg, A. P. (2001). Racial disparities in metabolism, central obesity, and sex hormone-binding globulin in postmenopausal women. The Journal of Clinical Endocrinology & Metabolism, 86(1), 97-103.
Blicharski, T. and Oniszczuk, A. (2017). Extraction methods for the isolation of isoflavonoids from plant material. Open Chemistry, 15(1): 34-45.
Boren, J., Taskinen, M. R. and Adiels, M. (2012). Kinetic studies to investigate lipoprotein metabolism. Journal of Internal Medicine, 271: 166-173.
Brambilla, P., Manzoni, P., Sironi, S., Simone, P., Del, A. M., & Chiumello, G. (1994). Peripheral and abdominal adiposity in childhood obesity. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 18(12), 795-800.
Bray, G. A. (2004). Medical consequences of obesity. The Journal of Clinical Endocrinology & Metabolism, 89(6), 2583-2589.
Bucolo, G. and David, H. (1973). Quantitative determination of serum triglycerides by the use of enzymes. Clinical Chemistry, 19: 476-482.
Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes, 57: 1470–81.
Carlson, S. E. and Goldfarb, S. (1977). A sensitive enzymatic method for thedetermination of free and esterified tissue cholesterol. Clinica Chimica Acta, 79: 575-582.
Carmen, G. Y. and Victor, S. M. (2006). Signalling mecchanisms regulating lipolysis. Cell Signalling, 18: 401-408.
Carruthers, M., Trinick, T. R., Jankowska, E., Traish, A. M. (2008). Are the adverse effects of glitazones linked to induced testosterone deficiency? Cardiovasc Diabetol, 7: 30-36.
Caterson, I. D., & Gill, T. P. (2002). Obesity: epidemiology and possible prevention. Best Practice & Research Clinical Endocrinology & Metabolism, 16(4), 595-610.
Caterson, I. D., Hubbard, V., Bray, G. A., Grunstein, R., Hansen, B. C., Hong, Y., ... & Smith Jr, S. C. (2004). Prevention Conference VII: Obesity, a worldwide epidemic related to heart disease and stroke: Group III: worldwide comorbidities of obesity. Circulation, 110(18), e476-e483.
Chang, G.R., Chiu, Y.S., Wu, Y.Y. et al. (2009). Rapamycin protects against high-fat diet-induced obesity in C57BL/6J mice. Journal of Pharmacological Sciences, 109: 496-503.
Chen, Y. D., Risser, T. R., Cully, M. and Reaven, G. M. (1979). Is the hypertriglyceridemia associated with insulin deficiency caused by decreased lipoprotein lipase activity? Diabetes, 28: 893-898.
Choi, I., Kim, Y., Park, Y., Seog, H. & Choi, H. (2007). Anti-obesity activities of fermented soygerm isoflavones by Bifidobacterium breve. BioFactors, 29, 105-112.
Darlington, G. J., Ross, S. E., MacDougald, O. A. (1998). The role of C/EBP genes in adipocyte differentiation. Journal of Biological Chemistry, 273: 30057-30060.
Fisher, R. M., Coopack, S. W., Humphreys, S. M., Gibbons, G. F. and Frayn, K. N. (1995). Human triacyglycerol-rich lipoprotein subfractions as substrates for lipoprotein lipase. Clinica Chimica Acta, 236: 7-17.
Foster, K. J., Alberti, K. G., Hinks, L., Lloyd, B., Postie, A., Smythe, P., Turnell, D. C. and Waiton, R. (1978). Blood intermediary metabolite and insulin concentrations after an overnight fast: references for adults and interrelations. Clinical Chemistry, 24: 1568-1572.
Fruhbeck, G., Gómez-Ambrosi, J., Muruzábal, F. J., & Burrell, M. A. (2001). The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. American Journal of Physiology-Endocrinology And Metabolism, 280(6), E827-E847.
Gavin, J. R., Roth, J., Neville, D. M., De Meyts, P., & Buell, D. N. (1974). Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proceedings of the National Academy of Sciences, 71(1), 84-88.
Gavrilova, O., Marcus-Samuels, B., Graham, D., Kim, J. K., Shulman, G. I., Castle, A. L., ... & Reitman, M. L. (2000). Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. The Journal of Clinical Investigation, 105(3), 271-278.
Gibbs, B. F., Zougman, A., Masse, R., & Mulligan, C. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food research international, 37(2): 123-131.
Golbitz, P. (1995). Traditional soy foods: processing and products. The Journal of Nutrition, 125(3), 570-572.
Hanson, P., Schumacker, P., Debugne, T., & Clerin, M. (1992). Evaluation of somatic and autonomic small fibers neuropathy in diabetes. American Journal of Physical Medicine & Rehabilitation, 71(1), 44-47.
Harwood, H.J. Jr. (2005). Treating the metabolic syndrome: Acetyl-CoA carboxylase inhibition. Expert Opinion on Therapeutic Targets, 9, 267-281.
He, J., Ogden, L. G., Bazzano, L. A., Vupputuri, S., Loria, C., & Whelton, P. K. (2001). Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Archives of Internal Medicine, 161(7), 996-1002.
Ho, K. K., Pinsky, J. L., Kannel, W. B., & Levy, D. (1993). The epidemiology of heart failure: the Framingham Study. Journal of the American College of Cardiology, 22(4 Supplement 1), A6-A13.
Hoffmann, E. M., Muetzel, S., Becker, K. (2003). The fermentation of soybean meal by rumen microbes in vitro reveals different kinetic features for the inactivation and the degradation of trypsin inhibitor protein. Animal Feed Science and Technology, 106 (1), 189-197.
Holm, C. (2003). Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochemistry Society Transactions, 31: 1120-1124.
Howard, G., O’Leary, D. H., Zaccaro, D., Haffner, S., Rewers, M., Hamman, R., ... & Bergman, R. (1996). Insulin sensitivity and atherosclerosis. Circulation, 93(10), 1809-1817.
Ingelsson, E., Sundström, J., Ärnlöv, J., Zethelius, B., & Lind, L. (2005). Insulin resistance and risk of congestive heart failure. Jama, 294(3), 334-341.
Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M. & Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of Nutrition, 130(7): 1695-1699.
Jiang, R., Chang, X., Stoll, B., Ellis, K. J., Shypailo, R. J., Weaver, E., Burrin, D. G. (2000). Dietary plasma protein is used more efficiently than extruded soy protein for lean tissue growth in early-weaned pigs. The Journal of Nutrition, 130 (8), 2016-2019
Jideani, V. A. (2011). Functional Properties of Soybean Food Ingredients in Food Systems. InTech.
Kahn, B. B. (2000). Flier jS. Obesity and insulin resistance.The Journal of Clinical Investigation, 106, 473-481.
Kaushik, S. J., Cravedi, J. P., Lalles, J. P., Sumpter, J., Fauconneau, B., & Laroche, M. (1995). Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture, 133(3): 257-274.
Kiers, J. L., Nout, R. M. J., Rombouts, F. M. (2000). In vitro digestibility of processed and fermented soya bean, cowpea and maize. Journal of the Science of Food and Agriculture, 80 (9), 1325-1331.
Ko, C. Y., Lin, H. T. V., & Tsai, G. J. (2013). Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochemistry, 48(4): 559-568.
Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404(6778), 635.
Korner, J., Savontaus, E., Chua, S. C., Leibel, R. L. and Wardlaw, S. L. (2001). Leptin regulation of Agrp and Npy mRNA in the rat hypothalamus. Journal of Neuroendocrinology, 13: 959-966.
Kushner, R. F. (1993). Body weight and mortality. Nutrition Reviews, 51(5), 127-136.
Lee, I.S., Kim, J.P., Ryoo, I.J., Kim, Y.H., Choo, S.J., & Yoo, I.D. (2010). Lanostane triterpenes from Ganoderma lucidumsuppress the adipogenesis in 3T3-L1 cells through down-regulation of SREBP-1c. Bioorganic & Medicinal Chemistry Letters, 20: 77–81.
Lee, J. S. (2006). Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sciences,79 (16), 1578-1584.
Luthria, D. L., Biswas, R., Natarajan, S. (2007). Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chemistry, 105(1): 325-333.
Manson, J. E., Colditz, G. A., Stampfer, M. J., Willett, W. C., Rosner, B., Monson, R. R., & Hennekens, C. H. (1990). A prospective study of obesity and risk of coronary heart disease in women. New England Journal of Medicine, 322(13), 882-889.
Mark DH. (2005). Deaths attributable to obesity. Journal of the American Veterinary Medical Association, 293: 1918–9.
Medic, J., Atkinson, C., & Hurburgh Jr, C. R. (2014). Current knowledge in soybean composition. Journal of the American Oil Chemists' Society, 91(3), 363-384.
Mezei, O., Li, Y., Mullen, E., Ross-Viola, J.S., & Shay, N.F. (2006) Dietary isoflavone supplementation modulates lipid metabolism via PPAR alpha-dependent and -independent mechanisms. Physiological Genomics, 26: 8-14.
Miller, G. J., & Miller, N. E. (1975). Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. The Lancet, 305(7897), 16-19.
Miller, J., Rosenbloom, A., & Silverstein, J. (2004). Childhood obesity. The Journal of Clinical Endocrinology & Metabolism, 89(9), 4211-4218.
Misra, A., Singhal, N., & Khurana, L. (2010). Obesity, the metabolic syndrome, and type 2 diabetes in developing countries: Role of dietary fats and oils. Journal of the American College of Nutrition, 29: 289–301.
Moller, D. E., & Flier, J. S. (1991). Insulin resistance—mechanisms, syndromes, and implications. New England Journal of Medicine, 325(13), 938-948.
Moreno, L. A., & Rodriguez, G. (2007). Dietary risk factors for development of childhood obesity. Current Opinion in Clinical Nutrition & Metabolic Care, 10(3), 336-341.
Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G., & Dietz, W. H. (1999). The disease burden associated with overweight and obesity. Jama, 282(16), 1523-1529.
Nagashima, Y., Takeda, M., Ohta, I., Shimakura, K., & Shiomi, K. (2004). Purification and properties of proteinaceous trypsin inhibitors in the skin mucus of pufferfish Takifugu pardalis. Comparative Biochemistry and Physiology. Biochemistry and Molecular Biology, 138(2): 103-110.
Olsson, R. and Carlsson, P. O. (2005). Better vascular engraftment and function in pancreatic islets transplanted without prior culture. Diabetologia, 48: 469-476.
Ørgaard, A., & Jensen, L. (2008). The effects of soy isoflavones on obesity. Experimental Biology and Medicine, 233(9), 1066-1080.
Pan, W., Ikeda, K., Takebe, M., & Yamori, Y. (2001) Genistein, daidzein and glycitein inhibit growth and DNA synthesis of aortic smooth muscle cells from stroke-prone spontaneously hypertensive rats. The Journal of Nutrition, 131: 1154-1158.
Potter, S. M., Baum, J. A., Teng, H., Stillman, R. J., Shay, N. F., & Erdman, J. W. (1998). Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. The American journal of clinical nutrition, 68(6): 1375-1379.
Prentice, A. M., & Jebb, S. A. (1995). Obesity in Britain: gluttony or sloth?. Bmj, 311(7002), 437-439.
Qiao, Y., Sun, J., Xia, S. et al. (2015). Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. Journal of Functional Foods, 14, 424-434.
Rekha, C. R., and Vijayalakshmi, G. (2008). Biomolecules and nutritional quality of soymilk fermented with probiotic yeast and bacteria. Applied Biochemistry and Biotechnology, 151(2-3): 452-463.
Resnick, L. M., Militianu, D., Cunnings, A. J., Pipe, J. G., Evelhoch, J. L., & Soulen, R. L. (1997). Direct magnetic resonance determination of aortic distensibility in essential hypertension: relation to age, abdominal visceral fat, and in situ intracellular free magnesium. Hypertension, 30(3), 654-659.
Rupert, G. C. Y. and Wolfe, M. M. (2000). GIF biolgy and fat metabolism. Life Sciences, 66: 91-103.
Rydtren, T. and Sandler, S. (2002). Efficacy of 1,400 W, a novel inhibitor of inducible nitric oxide synthase, in preventing interleukin-1beta-induced suppression of pancreatic islet function in vitro and multiple low-dose streptozotocin-induced diabetes in vivo. European Journal of Endocrinology, 147: 543-551.
Sarkar, P. K., Jones, L. J., Craven, G. S., Somerset, S. M., Palmer, C. (1997). Amino acid profiles of kinema, a soybean-fermented food. Food Chemistry, 59 (1), 69-75.
Saslaw, L. D., Anderson, H. J. and Waravdekar, V. S. (1963). Ultra-violet photolysis of unsaturated fatty acids in relation to the thiobarbituric acid test. Nature, 200: 1098-1099.
Savage, D.B., Choi, C.S., Samuel, V.T. et al. (2006). Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. The Journal of Clinical Investigation, 116, 817–824.
Shanik, M. H., Xu, Y., Skrha, J., Dankner, R., Zick, Y. and Roth J. (2008). Insulin Resistance and Hyperinsulinemia, is hyperinsulinemia the cart or the horse? Diabetes Care, 31: S262-S268.
Shimoni, E. (2004). Stability and shelf life of bioactive compounds during food processing and storage: soy isoflavones. Journal of Food Science, 69(6), 160-166.
Shirai, K. (2004). Obesity as the core of the metabolic syndrome and the management of coronary heart disease. Current Medical Research and Opinion, 20(3), 295-304.
Simopoulos, A. P., & Van Itallie, T. B. (1984). Body weight, health, and longevity. Annals of Internal Medicine, 100(2), 285-295.
Singhal, A. (2005). Endothelial dysfunction: role in obesity-related disorders and the early origins of CVD. Proceedings of the Nutrition Society, 64(1), 15-22.
Sjöström, L. V. (1992). Mortality of severely obese subjects. The American Journal of Clinical Nutrition, 55(2), 516S-523S.
Steinkraus, K. H. (1996). Handbook of indigenous fermented foods. rev. and expanded. Food science and technology (USA). no. 73.
Steinkraus, K. H., Hwa, Y. B., Van Buren, J. P., Provvidenti, M. I., & Hand, D. B. (1960). Studues on tempeh-an indonesian fermented soybean food. Journal of Food Science, 25(6), 777-788.
Swinburn, B. A., Caterson, I., Seidell, J. C., & James, W. P. T. (2004). Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutrition, 7(1a), 123-146.
Tietz, A, D., Rinker, N, W. and Shaw, L, M. (1980). International Federation of Clinical Chemistry, scientific committee. Journal of Clinical Chemistry and Clinical Biochemistry, 18: 521-534.
Tordjman, J., Khazen, W., Antoine, B., Chauvet, G., Quette, J., Fouque, F., ... & Forest, C. (2003). Regulation of glyceroneogenesis and phosphoenolpyruvate carboxykinase by fatty acids, retinoic acids and thiazolidinediones: potential relevance to type 2 diabetes. Biochimie, 85(12), 1213-1218.
Tounian, P., Aggoun, Y., Dubern, B., Varille, V., Guy-Grand, B., Sidi, D., ... & Bonnet, D. (2001). Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. The Lancet, 358(9291), 1400-1404.
Trayhurn, P. and Beattie, J. H. (2001). Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Priceeding of the Nutrition Society, 60: 329-339.
Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen receptor. Annals of Clinical Biochemistry, 6: 24-27.
Vinik, A. I., Holland, M. T., Le Beau, J. M., Liuzzi, F. J., Stansberry, K. B., & Colen, L. B. (1992). Diabetic neuropathies. Diabetes Care, 15(12), 1926-1975.
Wahba, I. M., & Mak, R. H. (2007). Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clinical Journal of the American Society of Nephrology, 2(3), 550-562.
Wang, Y. C., Yu, R. C., & Chou, C. C. (2006). Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiology, 23(2): 128-135.
White, C. E., Campbell, D. R., McDowell, L. R. (2000). Effects of dry matter content on trypsin inhibitors and urease activity in heat treated soya beans fed to weaned piglets. Animal Feed Science and Technology, 87 (1), 105-115.
Wickelgren, I. (1988). Obesity how big problem. Science, 280: 1364-1367.
Wroblewski, F. (1956). The significance of alterations in serum enzymes in the differential diagnosis of jaundice. AMA Internal Medicine, 100: 635-641.
Xie, C. L., Hwang, C. E., Oh, C. K., Yoon, N. A., Ryu, J. H., Jeong, J. Y., ... & Kang, S. S. (2017). Fermented soy‐powder milk with Lactobacillus plantarum P1201 protects against high‐fat diet‐induced obesity. International Journal of Food Science & Technology, 52(7), 1614-1622.
Yoshino-Yasuda, S., Mori, A., Ishihara, N., Hasegawa, O., Kato, M., & Kitamoto, N. (2011). Development of a highly efficient gene replacement system for an industrial strain of Aspergillus oryzae used in the production of miso, a Japanese fermented soybean paste. Food Science and Technology Research, 17(2), 161-166.
Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Paris P, Varigos J and Lisheng L. (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 364: 937-952
Zakharieva, S. (1999). Arterial hypertension and obesity--a dangerous combination. Vutreshni Bolesti, 31(1), 28-32.
Zhang, G. L., Wang, Y. H., Ni, W., Teng, H. L. and Lin, Z. B. (2002). Hepatoptective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice. World Journal of Gastroenterology, 8: 728-733.
Zhang, J., Xiao, X., Dong, Y., Xu, T., & Wu, F. (2016). Dietary supplementation with Lactobacillus plantarum dy‐1 fermented barley suppresses body weight gain in high‐fat diet‐induced obese rats. Journal of the Science of Food and Agriculture, 96(15), 4907-4917.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊