跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/14 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪勤絜
研究生(外文):Hung, Chin-Chieh
論文名稱:探討綠藻石蓴做為營養補充物應用於乳酸發酵
論文名稱(外文):The use of green macroalgae Ulva sp. as nutrient supplementation in lactic acid fermentation
指導教授:林泓廷
指導教授(外文):Lin, Hong-Ting
口試委員:蔡國珍陳建中吳建輝潘崇良林泓廷
口試委員(外文):Tsai, Guo-JaneChen, Chien-ChungWu, Chien-HuiPan, Chorng-LiangLin, Hong-Ting
口試日期:2019-07-01
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:綠藻石蓴嗜酸乳酸桿菌營養補充物酵素水解乳酸發酵
外文關鍵詞:Ulva sp.Lactobacillus acidophilusNutrient supplementationEnzymatic hydrolysisLactic acid fermentation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乳酸不僅為生物可分解材料─聚乳酸的主要原料,在製藥、食品、造紙和塑膠等工業上亦有廣泛的應用;微生物發酵為乳酸主要的生產方式,而大型藻類─綠藻石蓴中富含多醣與蛋白質,具有做為乳酸發酵基質之潛力。本研究利用乳酸菌發酵綠藻石蓴水解液並探討其乳酸產量。固定 109 CFU/mL 的 Lactobacillus rhamnosus BCRC 10940 與 BCRC 14068 於聚乳酸微管束陣列膜 (Poly-L-Lactic Acid Microtube Array Membrane, PLLA-MTAM),可分別得到 84.0 ± 6.4% 與 83.1 ± 5.0% 之包覆率,以此固定化菌體發酵含有 3% (w/v) 葡萄糖的 MRS 培養基 72 h 後之乳酸濃度分別為 15.32 ± 0.13 g/L 與 15.33 ± 0.19 g/L、乳酸轉換率分別為 0.55 ± 0.01 g/g sugar 與 0.58 ± 0.01 g/g sugar;另外也會產生非目標產物乙醇 5.25 ± 0.08 g/L 與 5.28 ± 0.02 g/L,而乙醇轉換率分別為 0.20 ± 0.00 g/g sugar 與 0.20 ± 0.00 g/g sugar,產物莫耳數比則為分別 1 : 0.70 與 1 : 0.70 (乳酸 : 乙醇)。透過酸水解及電透析法製備石蓴酸水解液,其葡萄糖含量為 9.35 ± 0.07g/L、鼠李糖含量為 39.27 ± 0.12 g/L,並能將其鹽度降至 8% (w/w) 以下。以 Lb. rhamnosus BCRC 10940 及 BCRC 14068 發酵 4% (w/v) 鼠李糖作為替代碳源之 MRS 培養基,Lb. rhamnosus BCRC 10940 雖能利用鼠李糖產生乳酸,最終乳酸濃度為 8.79 ± 0.04 g/L,但其轉換率為 0.36 ± 0.11 g/g sugar,最高乳酸生產速率達 0.28 ± 0.01 g/L∙h;而 Lb. rhamnosus BCRC 14068 則幾乎無法利用鼠李糖產生乳酸,僅消耗 0.94 ± 0.04 g/L 的鼠李糖,產生 0.46 ± 0.01 g/L 的乳酸。上述之實驗結果說明綠藻石蓴並不適合做為 Lb. rhamnosus BCRC 10940 與 BCRC 14068 之乳酸發酵基質中的碳源,而此二菌株也不適合做為發酵生產高濃度乳酸的菌株。利用 12% (w/v) 石蓴藻粉、纖維素酶 Cellulase 15 U/mL與蛋白酶 Umamizyme 5.40 U/g Ulva sp.、水解時間 48 h 的條件製備石蓴酵素水解液,其游離胺基酸含量為 103.06 ± 1.38 mM,葡萄糖與鼠李糖含量分別為 8.20 ± 0.12 與 6.33 ± 0.06 g/L。將石蓴酵素水解液之初始葡萄糖濃度調整至約 40 g/L 並添加 0.26 M 乙酸鈉作為緩衝劑,接種 Lb. acidophilus BCRC 10695 進行乳酸發酵,其最終乳酸濃度為 24.32 ± 0.40 g/L,最高乳酸生產速率為 0.58 ± 0.04 g/L∙h,乳酸轉換率為 0.86 ± 0.02 g/g sugar,最高乳酸菌數為 9.31 ± 0.03 Log CFU/mL。此結果表示 Lb. acidophilus 於石蓴酵素水解液中的生長狀況良好,且綠藻石蓴確實可以做為良好的營養補充物,替代乳酸發酵基質中的氮源提供游離胺基酸。
Lactic acid is not only the main raw material of polylactic acid, but also widely used in industry such as pharmaceutical, food, and plastics industries. Green alga Ulva sp., which contains high amount of polysaccharides and proteins, has the potential to be an alternative substrate for lactic acid fermentation. This study intends to use green alga Ulva sp. for lactic acid fermentation. The encapsulation efficiency of immobilized Lactobacillus rhamnosus BCRC 10940 and BCRC 14068 were 84.0 ± 6.4% and 83.1 ± 5.0%, respectively, by using Poly-L-Lactic Acid Microtube Array Membrane (PLLA-MTAM). The yields of lactic acid in fermentation of MRS broth using immobilized Lb. rhamnosus BCRC 10940 and BCRC 14068 were 0.55 ± 0.01 and 0.58 ± 0.01 g/g sugar, respectively. In addition, by-product ethanol was also producted, the yields of ethanol were 0.20 ± 0.00 and 0.20 ± 0.00 g/g sugar, respectively. The Ulva sp. acid hydrolysate was prepared by acid hydrolysis and electrodialysis, in which contained 9.35 ± 0.07g/L of glucose, 39.27 ± 0.12 g/L of rhamnose. The MRS broth with rhamnose as carbon source was fermented by Lb. rhamnosus BCRC 10940 and BCRC 14068, Lb. rhamnosus BCRC 10940 was able to use rhamnose and produce lactic acid, the yields of lactic acid were 0.36 ± 0.11 g/g sugar, and the highest lactic acid production rate was 0.28 ± 0.01 g/L∙h; Lb. rhamnosus BCRC 14068 was unable to produce lactic acid from rhamnose. The results above indicated that Ulva sp. is not suitable as carbon source in the lactic acid fermentation using Lb. rhamnosus BCRC 10940 and BCRC 14068. Lb. rhamnosus BCRC 10940 and BCRC 14068 are also not suitable as strains for the fermentation aims high production of lactic acid. 12% (w/v) Ulva sp. powder, 15 U Cellulase/mL, 5.40 U Umamizyme/g Ulva sp., and hydrolysis for 48 hours were used to prepare the Ulva sp. enzymatic hydrolysate, and the free amino acid content was 103.06 ± 1.38 mM. The Ulva sp. enzymatic hydrolysate was fermented by Lb. acidophilus, the highest lactic acid production rate was 0.58 ± 0.04 g/L∙h, the yield of lactic acid was 0.86 ± 0.02 g/g sugar, and the highest count of viable Lb. acidophilus cells was 9.31 ± 0.03 Log CFU/mL. These results indicated that Lb. acidophilus grew well in the Ulva sp. enzymatic hydrolysate, and Ulva sp. could be used as a good nutrient supplementation for lactic acid fermentation, to replace the nitrogen source in the media and provide amino acids.
摘要.....................................................I
Abstract................................................II
目錄...................................................III
表目錄...................................................VI
圖目錄..................................................VII
附錄目錄...............................................VIII
壹、前言..................................................1
貳、文獻整理..............................................2
一、乳酸..................................................2
1.1. 乳酸之特性...........................................2
1.2. 乳酸之應用...........................................2
1.2.1. 聚乳酸.............................................2
1.3. 乳酸之生產...........................................3
1.3.1. 化學合成法.........................................3
1.3.2. 微生物發酵法.......................................4
1.4. 乳酸之分離純化.......................................5
二、乳酸菌................................................5
2.1. 乳酸菌之定義與特性....................................5
2.2. 乳酸菌之發酵特性與分類................................6
2.3. 乳酸菌之營養需求.....................................7
2.3.1. 醣類..............................................7
2.3.2. 胺基酸與胜肽.......................................8
2.3.3. 脂肪酸.............................................9
2.3.4. 維生素.............................................9
2.3.5. 礦物質............................................10
三、發酵基質.............................................10
3.1. 醣類來源............................................10
3.1.1. 澱粉類作物........................................10
3.1.2. 纖維素植物........................................11
3.2. 營養補充物..........................................11
3.3. 海藻...............................................11
3.3.1. 石蓴之生態特性....................................12
3.3.2. 石蓴之組成份......................................12
四、糖化.................................................13
4.1. 酸水解..............................................13
4.2. 酵素水解............................................14
五、蛋白質水解...........................................14
5.1. 蛋白質萃取..........................................14
5.1.1. 化學性萃取........................................15
5.1.2. 物理性處理........................................15
5.1.3. 酵素水解多醣......................................15
5.2. 酵素水解蛋白質......................................15
六、生產乳酸之發酵方法....................................16
6.1. 批次發酵與重複批次發酵...............................16
6.2. 饋料批次發酵........................................17
6.3. 連續式發酵..........................................17
七、固定化細胞...........................................17
7.1. 吸附或黏著於固體載體表面.............................18
7.2. 包埋在多孔洞基質中...................................18
7.3. 藉由絮凝劑或交聯劑自我凝集...........................18
7.4. 圍阻在機械屏障內....................................19
7.5. 微管束陣列膜........................................19
參、實驗設計.............................................20
肆、實驗材料與方法........................................21
一、實驗材料.............................................21
1.1. 原料...............................................21
1.2. 實驗菌株............................................21
1.3. 酵素...............................................21
1.4. 化學藥品............................................21
1.5. 儀器設備............................................22
1.6. 培養基組成..........................................23
二、實驗方法............................................24
2.1. 菌株活化、保存及生長曲線.............................24
2.1.1. Lb. rhamnosus....................................24
2.1.2. Lb. acidophilus..................................24
2.2. 微管束陣列膜固定化乳酸菌.............................25
2.2.1. 微管束陣列膜之製備.................................25
2.2.2. 乳酸菌之固定化....................................25
2.3. 乳酸菌鼠李糖利用性試驗...............................26
2.4. 乳酸發酵最適糖濃度...................................26
2.5. 石蓴之一般成分分析...................................26
2.5.1. 水分.............................................26
2.5.2. 粗蛋白............................................26
2.5.3. 粗脂肪............................................27
2.5.4. 灰分.............................................27
2.6. 石蓴酸水解液製備....................................27
2.6.1. 酸水解............................................27
2.6.2. 酸水解液之電透析處理...............................28
2.7. 石蓴酵素水解液製備...................................28
2.7.1. 纖維素酶最適添加量.................................28
2.7.2. 蛋白酶最適添加量..................................28
2.7.3. 最適水解時間......................................28
2.8. 發酵石蓴水解液製備乳酸...............................29
2.9. 游離胺基酸含量分析...................................29
2.10. 醣類及乳酸定量分析..................................29
2.11. 統計分析...........................................30
伍、結果與討論...........................................31
一、PLLA-MTAM 固定化 Lb. rhamnosus 製備..................31
1.1. Lb. rhamnosus 生長曲線..............................31
1.2. PLLA-MTAM 固定化乳酸菌之包覆率測試及乳酸菌菌數對包覆率之影響....................................................31
二、PLLA-MTAM 固定化 Lb. rhamnosus 乳酸發酵 MRS 培養基......................................................32
三、石蓴酸水解液製備......................................34
3.1. 石蓴一般成分分析....................................34
3.2. 石蓴酸水解液之製備...................................34
四、Lb. rhamnosus 之鼠李糖利用性..........................34
五、Lb. acidophilus 生長曲線.............................36
六、Lb. acidophilus 乳酸發酵最適葡萄糖添加量探討...........36
七、石蓴酵素水解液之製備..................................37
7.1. 最適纖維素酶添加量...................................37
7.2. 最適蛋白酶添加量....................................38
7.3. 最適水解時間........................................38
八、Lb. acidophilus 乳酸發酵石蓴酵素水解液................39
陸、結論.................................................42
參考文獻.................................................43
圖表....................................................58
附錄....................................................79
吳執中。(2015)。利用微管束陣列膜固定化酵母菌 Kluyveromyces marxianus 生產生質乙醇。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
周漢凱。(2013)。翼枝菜酸水解液解毒及膠囊化 Kluyveromyces marxianus 以增加生質酒精產量。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
洪悅豪。(2018)。石蓴硫酸多醣與石蓴硫酸寡醣之製備與生理活性探討及利用石蓴藻渣發酵生產乳酸之評估。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
翁健軒。(2015)。利用微管束陣列膜固定化 Kluyveromyces marxianus 發酵龍鬚菜酸水解液生產生質酒精。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
高德育。(2014)。海藻多醣水解液以乳酸菌發酵生產乳酸之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
陳家宥。(2017)。裂片石蓴混合寡糖之產製及其抗氧化與抗腸病毒生理活性之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
黃淑芳。(1989)。認識藻類。國立臺灣博物館。臺北,臺灣。
黃淑芳。(2000)。臺灣東北角海藻圖錄。國立臺灣博物館。臺北,臺灣。
廖啟成。(1998)。乳酸菌之分類應用。食品工業。30: 1-10。
籃涓齊。(2018)。微管束陣列膜固定化乳酸菌應用於紅藻龍鬚菜重複批次發酵生產乳酸。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
Abdel-Rahman, M. A., Tashiro, Y., and Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 156, 286-301.
Abdel-Rahman, M. A., Tashiro, Y., and Sonomoto, K. (2013a). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31, 877-902.
Abdel-Rahman, M. A., Tashiro, Y., Zendo, T., and Sonomoto, K. (2013b). Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. Royal Society of Chemistry Advances, 3, 8437-8445.
Adsul, M., Khire, J., Bastawde, K., and Gokhale, D. (2007a). Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Applied and Environmental Microbiology, 73, 5055-5057.
Adsul, M. G., Varma, A. J., and Gokhale, D. V. (2007b). Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chemistry, 9, 58-62.
Aguirre, L., Garro, M. S., and de Gioria, G. S. (2008). Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chemistry, 111, 976-982.
Akerberg, C., and Zacchi, G. (2000). An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresource Technology, 75, 119-126.
Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., and Cantarella, M. (2000). Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology and Biotechnology, 25, 184-192.
Altaf, M., Naveena, B. J., and Reddy, G. (2007). Use of inexpensive nitrogen sources and starch for L (+) lactic acid production in anaerobic submerged fermentation. Bioresource Technology, 98, 498-503.
Altermann, E., Russell, W. M., Azcarate-Peril, M. A., Barrangou, R., Buck, B. L., McAuliffe, O., Souther, N., Dobson, A., Duong, T., Callanan, M., Lick, S., Hamrick, A., Cano, R., and Klaenhammer, T. R. (2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proceedings of the National Academy of Sciences of the United States of America, 102, 3906-3912.
Amrane, A., and Prigent, Y. (1996). A novel concept of bioreactor. Specialized function two-stage continuous reactor, and its application to lactose conversion into lactic acid. Journal of Biotechnology, 45, 195-203.
Anastassiadis, S., and Rehm, H. J. (2006). Citric acid production from glucose by yeast Candida oleophila ATCC 20177 under batch, continuous and repeated batch cultivation. Electronic Journal of Biotechnology, 9, 26-39.
Andrews, G. F., and Fonta, J. P. (1989). A fluidized-bed continuous bioreactor for lactic acid production. Applied Biochemistry and Biotechnology, 20, 375-390.
AOAC. (2006). Proximate analysis of milk-based infant formula. Official Methods of Analysis of AOAC International, 18th edition. Association of Analytical Communities, Gaithersburg, MD, U.S.A. Official Method 970.59.
Auras, R., Harte, B., and Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4, 835-864.
Bai, D. M., Wei, Q., Yan, Z. H., Zhao, X. M., Li, X. G., and Xu, S. M. (2003). Fed-batch fermentation of Lactobacillus lactis for hyper-production of L-lactic acid. Biotechnology Letters, 25, 1833-1835.
Banu, I., Vasilean, I., and Aprodu, I. (2011). Effect of select parameters of the sourdough rye fermentation on the activity of some mixed starter cultures. Food Biotechnology, 25, 275-291.
Barbarino, E., and Lourenço, S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. Journal of Applied Phycology, 17, 447-460.
Bintsis, T., Vafopoulou-Mastrojiannaki, A., Litopoulou-Tzanetaki, E., and Robinson, R. K. (2003). Protease, peptidase and esterase activities by lactobacilli and yeast isolates from Feta cheese brine. Journal of Applied Microbiology, 95, 68-77.
Bishai, M., De, S., Adhikari, B., and Banerjee, R. (2015). A platform technology of recovery of lactic acid from a fermentation broth of novel substrate Zizyphus oenophlia. 3 Biotech, 5, 455-463.
Bjarnadottir, M., Adalbjornsson, B. V., Nilsson, A., Slizyte, R., Roleda, M. Y., Hreggvidsson, G. O., Fridjonsson, O. H., and Jonsdottir, R. (2018). Palmaria palmata as an alternative protein source: Enzymatic protein extraction, amino acid composition, and nitrogen-to-protein conversion factor. Journal of Applied Phycology, 30, 2061-2070.
Bleakley, S., and Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Foods, 6, 33.
Bodik, I., Blst'akova, A., Dancova, L., and Sedlacek, S. (2009). Comparison of flat-sheet and hollow-fiber membrane modules in municipal wastewater treatment. Polish Journal of Environmental Studies, 18, 331-340.
Bolton, J. J., Robertson-Andersson, D. V., Shuuluka, D., and Kandjengo, L. (2009). Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: A SWOT analysis. Journal of Applied Phycology, 21, 575-583.
Brozek, J., Benesova, V., Malinova, L., Kalouskova, R., Sanda, K., and Ledrova, Z. (2014). Stability of poly (L-lactic acid) in textile applications. Polymers for Advanced Technologies, 25, 934-939.
Buchert, J., Niemela, K., Puls, J., and Poutanen, K. (1990). Improvement in the fermentability of steamed hemicellulose hydrolysate by ion exclusion. Process Biochemistry International, 25, 176-180.
Burgos-Rubio, C. N., Okos, M. R., and Wankat, P. C. (2000). Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnology Progress, 16, 305-314.
Burns, P., Vinderola, G., Molinari, F., and Reinheimer, J. (2008). Suitability of whey and buttermilk for the growth and frozen storage of probiotic Lactobacilli. International Journal of Dairy Technology, 61, 156-164.
Buyukkileci, A. O., and Harsa, S. (2004). Batch production of L (+) lactic acid from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology and Biotechnology, 79, 1036-1040.
Calderon, M., Loiseau, G., and Guyot, J. P. (2001). Nutritional requirements and simplified cultivation medium to study growth and energetics of a sourdough lactic acid bacterium Lactobacillus fermentum Ogi E1 during heterolactic fermentation of starch. Journal of Applied Microbiology, 90, 508-516.
Caylak, B., and Sukan, F. V. (1998). Comparison of different production processes for bioethanol. Turkish Journal of Chemistry, 22, 351-359.
Champagne, C. P. (2009). Some Technological Challenges in The Addition of Probiotic Bacteria to Foods. Springer: New York, pp. 761-804
Chang, H. N., Kim, N. J., Kang, J., Jeong, C. M., Choi, J. D. R., Fei, Q., Kim, B. J., Kwon, S., Lee, S. Y., and Kim, J. (2011). Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess and Biosystems Engineering, 34, 419-431.
Chen, C. C., Wu, C. H., Wu, J. J., Chiu, C. C., Wong, C. H., Tsai, M. L., and Lin, H. T. V. (2015). Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane. Process Biochemistry, 50, 1509-1515.
Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., and Cheng, Y. (2010). Review of biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2, 1-30.
Cheng, K.-K., Zhang, J.-A., Liu, D.-H., Sun, Y., Yang, M.-D., and Xu, J.-M. (2006). Production of 1, 3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnology Letters, 28, 1817-1821.
Cheng, P., Mueller, R., Jaeger, S., Bajpai, R., and Iannotti, E. (1991). Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus. Journal of Industrial Microbiology, 7, 27-34.
Choi, G. W., Kang, H. W., and Moon, S. K. (2009). Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Applied Microbiology and Biotechnology, 84, 261-269.
Chramostova, J., Mosnova, R., Lisova, I., Pesek, E., Drbohlav, J., and Nemeckova, I. (2014). Influence of cultivation conditions on the growth of Lactobacillus acidophilus, Bifidobacterium sp., and Streptococcus thermophilus, and on the production of organic acids in fermented milks. Czech Journal of Food Sciences, 32, 422-429.
Clark, T. A., and Mackie, K. L. (1984). Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. Journal of Chemical Technology and Biotechnology, 34, 101-110.
Coutu, D. L., Yousefi, A. M., and Galipeau, J. (2009). Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. Journal of Cellular Biochemistry, 108, 537-546.
Dashti, M. G., Abdeshahian, P., Yusoff, W. M. W., Kalil, M. S., and Hamid, A. A. (2014). Repeated batch fermentation biotechnology for the biosynthesis of lipid and gamma-linolenic acid by Cunninghamella bainieri 2A1. Biomed Research International, 2014.
Datta, R., and Henry, M. (2006). Lactic acid: Recent advances in products, processes and technologies - A review. Journal of Chemical Technology and Biotechnology, 81, 1119-1129.
Datta, R., Tsai, S. P., Bonsignore, P., Moon, S. H., and Frank, J. R. (1995). Technological and economic - Potential of poly (lactic acid) and lactic-acid derivatives. Federation of European Microbiological Societies Microbiology Reviews, 16, 221-231.
Dave, R. I., and Shah, N. P. (1996). Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria. Journal of Dairy Science, 79, 1529-1536.
Desbois, A. P., and Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85, 1629-1642.
Dey, P., and Pal, P. (2012). Direct production of L (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. Journal of Membrane Science, 389, 355-362.
Djeghri-Hocine, B., Boukhemis, M., Zidoune, M. N., and Amrane, A. (2007). Evaluation of de-lipidated egg yolk and yeast autolysate as growth supplements for lactic acid bacteria culture. International Journal of Dairy Technology, 60, 292-296.
Djukic-Vukovic, A. P., Jokic, B. M., Kocic-Tanackov, S. D., Pejin, J. D., and Mojovic, L. V. (2016). Mg-modified zeolite as a carrier for Lactobacillus rhamnosus in L(+) lactic acid production on distillery wastewater. Journal of the Taiwan Institute of Chemical Engineers, 59, 262-266.
Djukic-Vukovic, A. P., Mojovic, L. V., Jokic, B. M., Nikolic, S. B., and Pejin, J. D. (2013). Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite. Bioresource Technology, 135, 454-458.
Djukic-Vukovic, A. P., Mojovic, L. V., Vukasinovic-Sekulic, M. S., Rakin, M. B., Nikolic, S. B., Pejin, J. D., and Bulatovic, M. L. (2012). Effect of different fermentation parameters on L-lactic acid production from liquid distillery stillage. Food Chemistry, 134, 1038-1043.
Dong, X. Y., Bai, S., and Sun, Y. (1996). Production of L (+)-lactic acid with Rhizopus oryzae immobilized in polyurethane foam cubes. Biotechnology Letters, 18, 225-228.
Donnell, M. M. O., Forde, B. M., Neville, B., Ross, P. R., and Toole, P. W. O. (2011). Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microbial Cell Factories, 10.
Ebnesajjad, S. (2012). Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications. Elseviver/William Andrew: Oxford, Waltham, pp. 213-263
Elezi, O., Kourkoutas, Y., Koutinas, A. A., Kanellaki, M., Bezirtzoglou, E., Barnett, Y. A., and Nigam, P. (2003). Food additive lactic acid production by immobilized cells of Lactobacillus brevis on delignified cellulosic material. Journal of Agricultural and Food Chemistry, 51, 5285-5289.
FAO. (2016). The State of World Fisheries and Aquaculture 2016. Food and Agricultural Organization of the United Nations, Rome, Italy.
Farooq, U., Anjum, F. M., Zahoor, T., Sajjad-ur-Rahman, Randhawa, M. A., Ahmed, A., and Akram, K. (2012). Optimization of lactic acid production from cheap raw material: Sugarcane molasses. Pakistan Journal of Botany, 44, 333-338.
Fitzpatrick, J. J., Ahrens, M., and Smith, S. (2001). Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate. Process Biochemistry, 36, 671-675.
Fleurence, J. (1999). Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends in Food Science and Technology, 10, 25-28.
Fleurence, J., Massiani, L., Guyader, O., and Mabeau, S. (1995). Use of enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmata. Journal of Applied Phycology, 7, 393.
Foucaud, C., Francois, A., and Richard, J. (1997). Development of a chemically defined medium for the growth of Leuconostoc mesenteroides. Applied and Environmental Microbiology, 63, 301-304.
Fukushima, K., Sogo, K., Miura, S., and Kimura, Y. (2004). Production of D-lactic acid by bacterial fermentation of rice starch. Macromolecular Bioscience, 4, 1021-1027.
Galbe, M., and Zacchi, G. (2002). A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology, 59, 618-628.
Gandhi, A., and Shah, N. P. (2014). Effects of salt concentration and pH on structural and functional properties of Lactobacillus acidophilus: FT-IR spectroscopic analysis. International Journal of Food Microbiology, 173, 41-47.
Gao, C., Ma, C. Q., and Xu, P. (2011). Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances, 29, 930-939.
Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9, 63-84.
Gaudreau, H., Renard, N., Champagne, C. P., and Van Horn, D. (2002). The evaluation of mixtures of yeast and potato extracts in growth media for biomass production of lactic cultures. Canadian Journal of Microbiology, 48, 626-634.
Ghorpade, V. M., Gennadios, A., and Hanna, M. A. (2001). Laboratory composting of extruded poly (lactic acid) sheets. Bioresource Technology, 76, 57-61.
Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., and Bogel-Lukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775-4800.
Goderska, K., Nowak, J., and Czarnecki, Z. (2008). Comparision of growth of Lactobacillus acidophilus and Bifidobacterium Bifidum species in media suplemented with selected saccharides including prebiotics. Acta Scientiarum Polonorum Technologia Alimentaria, 7, 5-20.
Goksungur, Y., Gunduz, M., and Harsa, S. (2005). Optimization of lactic acid production from whey by L. casei NRRL B-441 immobilized in chitosan stabilized Ca-alginate beads. Journal of Chemical Technology and Biotechnology, 80, 1282-1290.
Gomes, A. M. P., and Malcata, F. X. (1999). Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Science and Technology, 10, 139-157.
Goncalves, L. M. D., Barreto, M. T. O., Xavier, A. M. R. B., Carrondo, M. J. T., and Klein, J. (1992). Inert supports for lactic acid fermentation a technological assessment. Applied Microbiology and Biotechnology, 38, 305-311.
Guan, N. Z., Liu, L., Shin, H. D., Chen, R. R., Zhang, J., Li, J. H., Du, G. C., Shi, Z. P., and Chen, J. (2013). Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application. Journal of Biotechnology, 167, 56-63.
Gullon, B., Yanez, R., Alonso, J. L., and Parajo, J. C. (2008). L-lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology, 99, 308-319.
Guoqiang, D., Kaul, R., and Mattiasson, B. (1992). Immobilization of Lactobacillus casei cells to ceramic material pretreated with polyethylenimine. Applied Microbiology and Biotechnology, 37, 305-310.
Hébert, E. M., Raya, R. R., and de Giori, G. S. (2004a). Environmental Microbiology. Humana Press, pp. 139-148
Hébert, E. M., Raya, R. R., and De Giori, G. S. (2004b). Nutritional requirements of Lactobacillus delbrueckii subsp. lactis in a chemically defined medium. Current Microbiology, 49, 341-345.
Habova, V., Melzoch, K., Rychtera, M., and Sekavova, B. (2004). Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth. Desalination, 162, 361-372.
Harnedy, P. A., and FitzGerald, R. J. (2013). Extraction of protein from the macroalga Palmaria palmata. Lebensmittel-Wissenschaft and Technologie - Food Science and Technology, 51, 375-382.
Haros, M., Bielecka, M., Honke, J., and Sanz, Y. (2008). Phytate-degrading activity in lactic acid bacteria. Polish Journal of Food and Nutrition Sciences, 58.
Harrigan, W. F., and McCance, M. E. (1976). Laboratory Methods in Food and Dairy Microbiology. 1st Edition. Academic Press Inc Ltd., Cambridge, Massachusetts, U.S.A.
Hayek, S. A., and Ibrahim, S. A. (2013). Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Sciences, 4, 73-87.
Hofvendahl, K., and Hahn-Hagerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26, 87-107.
Holdt, S. L., and Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23, 543-597.
Hong, A. A., Cheng, K. K., Peng, F., Zhou, S., Sun, Y., Liu, C. M., and Liu, D. H. (2009). Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. Journal of Chemical Technology and Biotechnology, 84, 1576-1581.
Hu, J. L., Zhang, Z. T., Lin, Y. X., Zhao, S. M., Mei, Y. X., Liang, Y. X., and Peng, N. (2015). High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresource Technology, 182, 251-257.
Huang, L. P., Jin, B., Lant, P., and Zhou, J. T. (2005). Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochemical Engineering Journal, 23, 265-276.
Huang, Z. M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63, 2223-2253.
Hujanen, M., and Linko, Y. Y. (1996). Effect of temperature and various nitrogen sources on L (+) lactic acid production by Lactobacillus casei. Applied Microbiology and Biotechnology, 45, 307-313.
Idris, A., and Suzana, W. (2006). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochemistry, 41, 1117-1123.
Jenkins, J. K., and Courtney, P. D. (2003). Lactobacillus growth and membrane composition in the presence of linoleic or conjugated linoleic acid. Canadian Journal of Microbiology, 49, 51-57.
Jeong, S. Y., Trinh, L. T. P., Lee, H. J., and Lee, J. W. (2014). Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption. Bioresource Technology, 152, 444-449.
Jin, Y. L., and Speers, R. A. (1998). Flocculation of Saccharomyces cerevisiae. Food Research International, 31, 421-440.
John, R. P., Anisha, G. S., Nampoothiri, K. M., and Pandey, A. (2009). Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances, 27, 145-152.
John, R. P., Anisha, G. S., Nampoothiri, K. M., and Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102, 186-193.
John, R. P., Nampoothiri, K. M., and Pandey, A. (2006). Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 41, 759-763.
John, R. P., Nampoothiri, K. M., and Pandey, A. (2007). Fermentative production of lactic acid from biomass: An overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 74, 524-534.
Kadam, S. U., Álvarez, C., Tiwari, B. K., and O'Donnell, C. P. (2017). Extraction and characterization of protein from Irish brown seaweed Ascophyllum nodosum. Food Research International, 99, 1021-1027.
Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49, 209-224.
Kankaanpaa, P., Yang, B., Kallio, H., Isolauri, E., and Salminen, S. (2004). Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli. Applied and Environmental Microbiology, 70, 129-136.
Karamanlioglu, M., and Robson, G. D. (2013). The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 98, 2063-2071.
Karel, S. F., Libicki, S. B., and Robertson, C. R. (1985). The immobilization of whole cells: Engineering principles. Chemical Engineering Science, 40, 1321-1354.
Kim, J. H., Shoemaker, S. P., and Mills, D. A. (2009). Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology Society Journals, 155, 1351-1359.
Kim, Y. H., and Moon, S. H. (2001). Lactic acid recovery from fermentation broth using one-stage electrodialysis. Journal of Chemical Technology and Biotechnology, 76, 169-178.
Klinke, H. B., Thomsen, A. B., and Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10-26.
Kosseva, M. R., Panesar, P. S., Kaur, G., and Kennedy, J. F. (2009). Use of immobilised biocatalysts in the processing of cheese whey. International Journal of Biological Macromolecules, 45, 437-447.
Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., and Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiology, 21, 377-397.
Krischke, W., Schroder, M., and Trosch, W. (1991). Continuous production of L-lactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei. Applied Microbiology and Biotechnology, 34, 573-578.
Kyuchoukov, G., Marinova, M., Molinier, J., Albet, J., and Malmary, G. (2001). Extraction of lactic acid by means of a mixed extractant. Industrial and Engineering Chemistry Research, 40, 5635-5639.
Lahaye, M., Jegou, D., and Buleon, A. (1994). Chemical characteristics of insoluble glucans from the cell wall of the marine green alga Ulva lactuca (L.) Thuret. Carbohydrate Research, 262, 115-125.
Lahaye, M., and Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8, 1765-1774.
Lahl, W. J. (1994). Enzymatic production of protein hydrolysates for food use. Food Science, 48, 68-71.
Lahtinen, S., Ouwehand, A. C., Salminen, S., and Von Wright, A. (2011). Lactic Acid Bacteria: Microbiological and Functional Aspects. 4th Edition. CRC Press, pp. 77-86
Laopaiboon, P., Thani, A., Leelavatcharamas, V., and Laopaiboon, L. (2010). Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technology, 101, 1036-1043.
Lechiancole, T., Ricciardi, A., and Parente, E. (2002). Optimization of media and fermentation conditions for the growth of Lactobacillus sakei. Annals of Microbiology, 52, 257-274.
Lee, J., Lee, S. Y., Park, S., and Middelberg, A. P. J. (1999). Control of fed-batch fermentations. Biotechnology Advances, 17, 29-48.
Lee, K. H., Choi, I. S., Kim, Y. G., Yang, D. J., and Bae, H. J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technology, 102, 8191-8198.
Lee, K. W., Baick, S. C., Chung, W. H., and Kim, H. W. (2003). Structural observation of microencapsulated Lactobacillus acidophilus by optical and scanning electron microscopy. Food Science and Biotechnology, 12, 13-17.
Letort, C., and Juillard, V. (2001). Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. Journal of Applied Microbiology, 91, 1023-1029.
Li, C., Zhang, G. F., Mao, X., Wang, J. Y., Duan, C. Y., Wang, Z. J., and Liu, L. B. (2016). Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass. Journal of Dairy Science, 99, 4243-4250.
Li, K., and Chan, K. (1983). Production and properties of alpha-glucosidase from Lactobacillus acidophilus. Applied and Environmental Microbiology, 46, 1380-1387.
Li, Z., Lu, J. K., Yang, Z. X., Han, L., and Tan, T. W. (2012). Utilization of white rice bran for production of L-lactic acid. Biomass and Bioenergy, 39, 53-58.
Liaud, N., Rosso, M. N., Fabre, N., Crapart, S., Herpoel-Gimbert, I., Sigoillot, J. C., Raouche, S., and Levasseur, A. (2015). L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae. Microbial Cell Factories, 14, 66.
Lin, Y. S., Lee, W. C., Duan, K. J., and Lin, Y. H. (2013). Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus. Applied Energy, 105, 389-394.
Liong, M. T., and Shah, N. P. (2005). Optimization of growth of Lactobacillus casei ASCC 292 and production of organic acids in the presence of fructooligosaccharide and maltodextrin. Journal of Food Science, 70, 113-120.
Litchfield, J. H. (1996). Microbiological production of lactic acid. Advances in Applied Microbiology, 42, 45-95.
Liu, S. Q. (2003). Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. International Journal of Food Microbiology, 83, 115-131.
Lv, X. P., Liu, G. F., Sun, X. M., Chen, H. Y., Sun, J. H., and Feng, Z. (2017). Nutrient consumption patterns of Lactobacillus acidophilus KLDS 1.0738 in controlled pH batch fermentations. Journal of Dairy Science, 100, 5188-5194.
Lynd, L. R., Weimer, P. J., van Zyl, W. H., and Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 739-739.
Maas, R. H. W., Bakker, R. R., Jansen, M. L. A., Visser, D., De Jong, E., Eggink, G., and Weusthuis, R. A. (2008). Lactic acid production from lime-treated wheat straw by Bacillus coagulans: Neutralization of acid by fed-batch addition of alkaline substrate. Applied Microbiology and Biotechnology, 78, 751-758.
Maehre, H. K., Jensen, I. J., and Eilertsen, K. E. (2016). Enzymatic pre-treatment increases the protein bioaccessibility and extractability in Dulse (Palmaria palmata). Marine Drugs, 14, 196.
Mahajan, P., Desai, K., and Lele, S. (2012). Production of cell membrane-bound α-and β-glucosidase by Lactobacillus acidophilus. Food and Bioprocess Technology, 5, 706-718.
Mariam, I., Manzoor, K., Ali, S., and Ikram-Ul-Haq. (2009). Enhanced production of ethanol from free and immobilized Saccharomyces cerevisiae under stationary culture. Pakistan Journal of Botany, 41, 821-833.
Marques, S., Santos, J. A. L., Girio, F. M., and Roseiro, J. C. (2008). Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochemical Engineering Journal, 41, 210-216.
Marrion, O., Schwertz, A., Fleurence, J., Guéant, J. L., and Villaume, C. (2003). Improvement of the digestibility of the proteins of the red alga Palmaria palmata by physical processes and fermentation. Food/Nahrung, 47, 339-344.
Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., and Ingram, L. O. (2000). Effects of Ca(OH)2 treatments ("overliming") on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnology and Bioengineering, 69, 526-536.
Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., Gonzalez, J. M. D., Converti, A., and Oliveira, R. P. D. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science and Technology, 30, 70-83.
Meinita, M. D. N., Marhaeni, B., Winanto, T., Jeong, G. T., Khan, M. N. A., and Hong, Y. K. (2013). Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. Journal of Applied Phycology, 25, 1957-1961.
Mesnildrey, L., Jacob, C., Frangoudes, K., Reunavot, M., and Lesueur, M. (2012). Seaweed industry in France. Pole Halieutique Agrocampus Ouest. Rennes, France.
Moretro, T., Hagen, B. F., and Axelsson, L. (1998). A new, completely defined medium for meat lactobacilli. Journal of Applied Microbiology, 85, 715-722.
Nahak, S., Nahak, G., Pradhan, I., and Sahu, R. (2011). Bioethanol from marine algae: A solution to global warming problem. Journal of Applied Environmental and Biological Sciences, 1, 74-80.
Nampoothiri, K. M., Nair, N. R., and John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101, 8493-8501.
Nguyen, C. M., Kim, J. S., Hwang, H. J., Park, M. S., Choi, G. J., Choi, Y. H., Jang, K. S., and Kim, J. C. (2012). Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresource Technology, 110, 552-559.
Nikolaisen, L., Jensen, P. D., Bech, K. S., Dahl, J., Busk, J., Brødsgaard, T., Rasmussen, M. B., Bruhn, A., Bjerre, A.-B., and Nielsen, H. B. (2011). Energy production from marine biomass (Ulva lactuca). Danish Technological Institute. Tasstrup, Denmark.
O’Donnell, M. M., Forde, B. M., Neville, B., Ross, P. R., and O’Toole, P. W. (2011). Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. BioMed Central.
Oh, H., Wee, Y. J., Yun, J. S., Han, S. H., Jung, S. W., and Ryu, H. W. (2005). Lactic acid production from agricultural resources as cheap raw materials. Bioresource Technology, 96, 1492-1498.
Olsson, L., Soerensen, H. R., Dam, B. P., Christensen, H., Krogh, K. M., and Meyer, A. S. (2006). Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 129, 117-129.
Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernandez, J., Bozzo, C., Navarrete, E., Osorio, A., and Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99, 98-104.
Oshiro, M., Shinto, H., Tashiro, Y., Miwa, N., Sekiguchi, T., Okamoto, M., Ishizaki, A., and Sonomoto, K. (2009). Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 108, 376-384.
Ou, K. L., Chen, C. S., Lin, L. H., Lu, J. C., Shu, Y. C., Tseng, W. C., Yang, J. C., Lee, S. Y., and Chen, C. C. (2011a). Membranes of epitaxial-like packed, super aligned electrospun micron hollow poly (L-lactic acid) (PLLA) fibers. European Polymer Journal, 47, 882-892.
Ou, M. S., Ingram, L. O., and Shanmugam, K. T. (2011b). L (+)-lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. Journal of Industrial Microbiology and Biotechnology, 38, 599-605.
Ouyang, J., Ma, R., Zheng, Z. J., Cal, C., Zhang, M., and Jiang, T. (2013). Open fermentative production of L-lactic acid by Bacillus sp. strain NLO1 using lignocellulosic hydrolyzates as low-cost raw material. Bioresource Technology, 135, 475-480.
Paiva, L., Lima, E., Neto, A. I., Marcone, M., and Baptista, J. (2017). Nutritional and functional bioactivity value of selected Azorean macroalgae: Ulva compressa, Ulva rigida, Gelidium microdon, and Pterocladiella capillacea. Journal of Food Science, 82, 1757-1764.
Panesar, P. S., Kennedy, J. F., Gandhi, D. N., and Bunko, K. (2007). Bioutilisation of whey for lactic acid production. Food Chemistry, 105, 1-14.
Park, J. K., and Chang, H. N. (2000). Microencapsulation of microbial cells. Biotechnology Advances, 18, 303-319.
Partanen, L., Marttinen, N., and Alatossava, T. (2001). Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Systematic and Applied Microbiology, 24, 500-506.
Peinado, I., Giron, J., Koutsidis, G., and Ames, J. M. (2014). Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Research International, 66, 36-44.
Percival, S. S. (1979). Fish lipid/phosphollpid data challenged. Journal of Food Science, 44, iv-v.
Pilkington, P. H., Margaritis, A., Mensour, N. A., and Russell, I. (1998). Fundamentals of immobilised yeast cells for continuous beer fermentation: A review. Journal of the Institute of Brewing, 104, 19-31.
Pimentel, D., and Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. American Journal of Clinical Nutrition, 78, 660-663.
Pirian, K., Piri, K., Sohrabipour, J., and Blomster, J. (2018). Three species of Ulva (Ulvophyceae) from the Persian Gulf as potential sources of protein, essential amino acids and fatty acids. Phycological Research, 66, 149-154.
Qureshi, N., Saha, B. C., Hector, R. E., and Cotta, M. A. (2008). Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass and Bioenergy, 32, 1353-1358.
Radosavljevic, M., Pejin, J., Pribic, M., Kocic-Tanackov, S., Romanic, R., Mladenovic, D., Djukic-Vukovic, A., and Mojovic, L. (2019). Utilization of brewing and malting by-products as carrier and raw materials in L-(+)-lactic acid production and feed application. Applied Microbiology and Biotechnology, 103, 3001-3013.
Reale, A., Mannina, L., Tremonte, P., Sobolev, A. P., Succi, M., Sorrentino, E., and Coppola, R. (2004). Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: A 31P NMR study. Journal of Agricultural and Food Chemistry, 52, 6300-6305.
Reddy, G., Altaf, M., Naveena, B. J., Venkateshwar, M., and Kumar, E. V. (2008). Amylolytic bacterial lactic acid fermentation - A review. Biotechnology Advances, 26, 22-34.
Richter, K., and Berthold, C. (1998). Biotechnological conversion of sugar and starchy crops into lactic acid. Journal of Agricultural Engineering Research, 71, 181-191.
Robic, A., Rondeau-Mouro, C., Sassi, J. F., Lerat, Y., and Lahaye, M. (2009). Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohydrate Polymers, 77, 206-216.
Rosen, H. (1957). A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics, 67, 10-15.
Rossi, D. M., Flores, S. H., Heck, J. X., and Ayub, M. A. Z. (2009). Production of high-protein hydrolysate from poultry industry residue and their molecular profiles. Food Biotechnology, 23, 229-242.
Roukas, T., and Kotzekidou, P. (1998). Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme and Microbial Technology, 22, 199-204.
Sadasiva Rao, K., and Seshagiri, V. (1998). Protein concentration and alkaline phosphatase activity in uterine flushing from cows affected with endometritis. Indian Veterinary Journal, 75, 369-370.
Sarasua, J. R., Prud'homme, R. E., Wisniewski, M., Le Borgne, A., and Spassky, N. (1998). Crystallization and melting behavior of polylactides. Macromolecules, 31, 3895-3905.
Sari, Y. W., Mulder, W. J., Sanders, J. P., and Bruins, M. E. (2015). Towards plant protein refinery: Review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal, 10, 1138-1157.
Savijoki, K., Ingmer, H., and Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 71, 394-406.
Schaechter, M. (2009). Encyclopedia of Microbiology. 3rd Edition.Academic Press, pp.767-781.
Schepers, A. W., Thibault, J., and Lacroix, C. (2002). Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part II: Kinetic modeling and model validation. Enzyme and Microbial Technology, 30, 187-194.
Senouci-Rezkallah, K., Schmitt, P., and Jobin, M. P. (2011). Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiology, 28, 364-372.
Singh, S. K., Ahmed, S. U., and Pandey, A. (2006). Metabolic engineering approaches for lactic acid production. Process Biochemistry, 41, 991-1000.
Singhvi, M., Joshi, D., Adsul, M., Varma, A., and Gokhale, D. (2010). D-(-)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chemistry, 12, 1106-1109.
Sodergard, A., and Stolt, M. (2002). Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science, 27, 1123-1163.
Sreenath, H. K., Moldes, A. B., Koegel, R. G., and Straub, R. J. (2001). Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. Journal of Bioscience and Bioengineering, 92, 518-523.
Sun, Y., Li, Y. L., Bai, S., Yang, H., and Hu, Z. D. (1998). Stability of immobilized R. oryzae in repetitive batch productions of L (+)-lactic acid: Effect of inorganic salts. Bioprocess Engineering, 19, 155-157.
Suna, X. H., Wang, Q. H., Zhao, W. C., Ma, H. Z., and Sakata, K. (2006). Extraction and purification of lactic acid from fermentation broth by esterification and hydrolysis method. Separation and Purification Technology, 49, 43-48.
Tabasco, R., Paarup, T., Janer, C., Pelaez, C., and Requena, T. (2007). Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobicillus subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. International Dairy Journal, 17, 1107-1114.
Taillandier, P., Gilis, F., Portugal, F. R., Laforce, P., and Strehaiano, P. (1996). Influence of medium composition, pH and temperature on the growth and viability of Lactobacillus acidophilus. Biotechnol Lett, 18, 775-780.
Tang, A. L., Wilcox, G., Walker, K. Z., Shah, N. P., Ashton, J. F., and Stojanovska, L. (2010). Phytase activity from Lactobacillus spp. in calcium‐fortified soymilk. Journal of Food Science, 75, M373-M376.
Tango, M. S. A., and Ghaly, A. E. (2002). A continuous lactic acid production system using an immobilized packed bed of Lactobacillus helveticus. Applied Microbiology and Biotechnology, 58, 712-720.
Tashiro, Y., Kaneko, W., Sun, Y. Q., Shibata, K., Inokuma, K., Zendo, T., and Sonomoto, K. (2011). Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Applied Microbiology and Biotechnology, 89, 1741-1750.
Tay, A., and Yang, S. T. (2002). Production of L (+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnology and Bioengineering, 80, 1-12.
Terrade, N., Noel, R., Couillaud, R., and de Orduna, R. M. (2009). A new chemically defined medium for wine lactic acid bacteria. Food Research International, 42, 363-367.
Van Krimpen, M., Bikker, P., Van der Meer, I., Van der Peet-Schwering, C., and Vereijken, J. (2013). Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products. Wageningen UR Livestock Research.
Vazquez, J. A., Gonzalez, M. P., and Murado, M. A. (2004). Peptones from autohydrolysed fish viscera for nisin and pediocin production. Journal of Biotechnology, 112, 299-311.
Velazquez, A. C., Pometto, A. L., Ho, K. L. G., and Demirci, A. (2001). Evaluation of plastic-composite supports in repeated fed-batch biofilm lactic acid fermentation by Lactobacillus casei. Applied Microbiology and Biotechnology, 55, 434-441.
Verstrepen, K. J., Derdelinckx, G., Verachtert, H., and Delvaux, F. R. (2003). Yeast flocculation: What brewers should know. Applied Microbiology and Biotechnology, 61, 197-205.
Vieira, E. F., Soares, C., Machado, S., Correia, M., Ramalhosa, M. J., Oliva-teles, M. T., Carvalho, A. P., Domingues, V. F., Antunes, F., and Oliveira, T. A. C. (2018). Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chemistry, 269, 264-275.
Von Wright, A., and Axelsson, L. (2012). Lactic Acid Bacteria: Microbiological and Functional Aspects. CRC Press: London, pp. 1-17
Wallace, J. S. (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture Ecosystems and Environment, 82, 105-119.
Wang, L. M., Zhao, B., Liu, B., Yu, B., Ma, C. Q., Su, F., Hua, D. L., Li, Q. G., Ma, Y. H., and Xu, P. (2010). Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101, 7908-7915.
Wasewar, K. L. (2005). Separation of lactic acid: Recent advances. Chemical and Biochemical Engineering Quarterly, 19, 159-172.
Watanabe, I., Miyata, N., Ando, A., Shiroma, R., Tokuyasu, K., and Nakamura, T. (2012). Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. Bioresource Technology, 123, 695-698.
Wee, Y. J., Kim, J. N., and Ryu, H. W. (2006). Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 44, 163-172.
Wee, Y. J., and Ryu, H. W. (2009). Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresource Technology, 100, 4262-4270.
Wee, Y. J., Yun, J. S., Park, D. H., and Ryu, H. W. (2004). Biotechnological production of L (+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis. Biotechnology Letters, 26, 71-74.
Wegkamp, A., Teusink, B., de Vos, W. M., and Smid, E. J. (2010). Development of a minimal growth medium for Lactobacillus plantarum. Letters in Applied Microbiology, 50, 57-64.
White, S. R., Broadbent, J. R., Oberg, C. J., and McMahon, D. J. (2003). Effect of Lactobacillus helveticus and Propionibacterium freudenrichii ssp. shermanii combinations on propensity for split defect in Swiss cheese. Journal of Dairy Science, 86, 719-727.
Wisselink, H. W., Weusthuis, R. A., Eggink, G., Hugenholtz, J., and Grobben, G. J. (2002). Mannitol production by lactic acid bacteria: A review. International Dairy Journal, 12, 151-161.
Wong, K., and Cheung, P. C. (2001). Influence of drying treatment on three Sargassum species. Journal of Applied Phycology, 13, 43-50.
Wood, B. J., and Holzapfel, W. (1992). The Genera of Lactic Acid Bacteria. Springer Science and Business Media, pp.19-54
Wu, F. C., Wu, J. Y., Liao, Y. J., Wang, M. Y., and Shih, I. L. (2014). Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresource Technology, 156, 123-131.
Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., and Attia, H. (2011). Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chemistry, 128, 895-901.
Yang, J. C., Lee, S. Y., Tseng, W. C., Shu, Y. C., Lu, J. C., Shie, H. S., and Chen, C. C. (2012). Formation of highly aligned, single-layered, hollow fibrous assemblies and the fabrication of large pieces of PLLA membranes. Macromolecular Materials and Engineering, 297, 115-122.
Yin, H., Yu, S., Casey, P. S., and Chow, G. M. (2010). Synthesis and properties of poly (D, L-lactide) drug carrier with maghemite nanoparticles. Materials Science and Engineering C-Materials for Biological Applications, 30, 618-623.
Yin, L. J., Pan, C. L., and Jiang, S. T. (2002). Effect of lactic acid bacterial fermentation on the characteristics of minced mackerel. Journal of Food Science, 67, 786-792.
Yin, P. M., Nishina, N., Kosakai, Y., Yahiro, K., Park, Y., and Okabe, M. (1997). Enhanced production of L (+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. Journal of Fermentation and Bioengineering, 84, 249-253.
Yoon, J. J., Kim, Y. J., Kim, S. H., Ryu, H. J., Choi, J. Y., Kim, G. S., and Shin, M. K. (2010). Production of polysaccharides and corresponding sugars from red seaweed. Advanced Materials Research, 93, 463-466.
Yu, L., Lei, T., Ren, X. D., Pei, X. L., and Feng, Y. (2008). Response surface optimization of L-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochemical Engineering Journal, 39, 496-502.
Zhang, B. C., and Zhang, X. W. (2013). Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnology Progress, 29, 1230-1238.
Zhang, Y., Cong, W., and Shi, S. Y. (2011). Repeated fed-batch lactic acid production in a packed bed-stirred fermentor system using a pH feedback feeding method. Bioprocess and Biosystems Engineering, 34, 67-73.
Zhang, Y. M., Chen, X. R., Qi, B. K., Luo, J. Q., Shen, F., Su, Y., Khan, R., and Wan, Y. H. (2014). Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresource Technology, 163, 160-166.
Zhang, Y. X., and Vadlani, P. V. (2015). Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Journal of Bioscience and Bioengineering, 119, 694-699.
Zhao, K., Qiao, Q. G., Chu, D. Q., Gu, H. Q., Dao, T. H., Zhang, J., and Bao, J. (2013). Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresource Technology, 135, 481-489.
Zhao, Z. J., Xie, X. N., Wang, Z., Tao, Y. C., Niu, X. D., Huang, X. R., Liu, L., and Li, Z. Q. (2016). Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production. Journal of Bioscience and Bioengineering, 121, 645-651.
Zheng, L., Zhao, Y. J., Xiao, C. Q., Sun-Waterhouse, D., Zhao, M. M., and Su, G. W. (2015). Mechanism of the discrepancy in the enzymatic hydrolysis efficiency between defatted peanut flour and peanut protein isolate by Flavorzyme. Food Chemistry, 168, 100-106.
Ziadi, M., Rezouga, F., Bouallagui, H., Baati, L., Ben Othman, N., Thonart, P., and Hamdi, M. (2010). Kinetic study of Lactococcus lactis strains (SLT6 and SLT10) growth on papain-hydrolysed whey. World Journal of Microbiology and Biotechnology, 26, 2223-2230.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊