吳執中。(2015)。利用微管束陣列膜固定化酵母菌 Kluyveromyces marxianus 生產生質乙醇。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。周漢凱。(2013)。翼枝菜酸水解液解毒及膠囊化 Kluyveromyces marxianus 以增加生質酒精產量。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。洪悅豪。(2018)。石蓴硫酸多醣與石蓴硫酸寡醣之製備與生理活性探討及利用石蓴藻渣發酵生產乳酸之評估。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。翁健軒。(2015)。利用微管束陣列膜固定化 Kluyveromyces marxianus 發酵龍鬚菜酸水解液生產生質酒精。國立臺灣海洋大學食品科學系碩士學位論文。基隆。高德育。(2014)。海藻多醣水解液以乳酸菌發酵生產乳酸之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。陳家宥。(2017)。裂片石蓴混合寡糖之產製及其抗氧化與抗腸病毒生理活性之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。黃淑芳。(1989)。認識藻類。國立臺灣博物館。臺北,臺灣。
黃淑芳。(2000)。臺灣東北角海藻圖錄。國立臺灣博物館。臺北,臺灣。
廖啟成。(1998)。乳酸菌之分類應用。食品工業。30: 1-10。
籃涓齊。(2018)。微管束陣列膜固定化乳酸菌應用於紅藻龍鬚菜重複批次發酵生產乳酸。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。Abdel-Rahman, M. A., Tashiro, Y., and Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 156, 286-301.
Abdel-Rahman, M. A., Tashiro, Y., and Sonomoto, K. (2013a). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31, 877-902.
Abdel-Rahman, M. A., Tashiro, Y., Zendo, T., and Sonomoto, K. (2013b). Improved lactic acid productivity by an open repeated batch fermentation system using Enterococcus mundtii QU 25. Royal Society of Chemistry Advances, 3, 8437-8445.
Adsul, M., Khire, J., Bastawde, K., and Gokhale, D. (2007a). Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Applied and Environmental Microbiology, 73, 5055-5057.
Adsul, M. G., Varma, A. J., and Gokhale, D. V. (2007b). Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chemistry, 9, 58-62.
Aguirre, L., Garro, M. S., and de Gioria, G. S. (2008). Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chemistry, 111, 976-982.
Akerberg, C., and Zacchi, G. (2000). An economic evaluation of the fermentative production of lactic acid from wheat flour. Bioresource Technology, 75, 119-126.
Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., and Cantarella, M. (2000). Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology and Biotechnology, 25, 184-192.
Altaf, M., Naveena, B. J., and Reddy, G. (2007). Use of inexpensive nitrogen sources and starch for L (+) lactic acid production in anaerobic submerged fermentation. Bioresource Technology, 98, 498-503.
Altermann, E., Russell, W. M., Azcarate-Peril, M. A., Barrangou, R., Buck, B. L., McAuliffe, O., Souther, N., Dobson, A., Duong, T., Callanan, M., Lick, S., Hamrick, A., Cano, R., and Klaenhammer, T. R. (2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proceedings of the National Academy of Sciences of the United States of America, 102, 3906-3912.
Amrane, A., and Prigent, Y. (1996). A novel concept of bioreactor. Specialized function two-stage continuous reactor, and its application to lactose conversion into lactic acid. Journal of Biotechnology, 45, 195-203.
Anastassiadis, S., and Rehm, H. J. (2006). Citric acid production from glucose by yeast Candida oleophila ATCC 20177 under batch, continuous and repeated batch cultivation. Electronic Journal of Biotechnology, 9, 26-39.
Andrews, G. F., and Fonta, J. P. (1989). A fluidized-bed continuous bioreactor for lactic acid production. Applied Biochemistry and Biotechnology, 20, 375-390.
AOAC. (2006). Proximate analysis of milk-based infant formula. Official Methods of Analysis of AOAC International, 18th edition. Association of Analytical Communities, Gaithersburg, MD, U.S.A. Official Method 970.59.
Auras, R., Harte, B., and Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4, 835-864.
Bai, D. M., Wei, Q., Yan, Z. H., Zhao, X. M., Li, X. G., and Xu, S. M. (2003). Fed-batch fermentation of Lactobacillus lactis for hyper-production of L-lactic acid. Biotechnology Letters, 25, 1833-1835.
Banu, I., Vasilean, I., and Aprodu, I. (2011). Effect of select parameters of the sourdough rye fermentation on the activity of some mixed starter cultures. Food Biotechnology, 25, 275-291.
Barbarino, E., and Lourenço, S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. Journal of Applied Phycology, 17, 447-460.
Bintsis, T., Vafopoulou-Mastrojiannaki, A., Litopoulou-Tzanetaki, E., and Robinson, R. K. (2003). Protease, peptidase and esterase activities by lactobacilli and yeast isolates from Feta cheese brine. Journal of Applied Microbiology, 95, 68-77.
Bishai, M., De, S., Adhikari, B., and Banerjee, R. (2015). A platform technology of recovery of lactic acid from a fermentation broth of novel substrate Zizyphus oenophlia. 3 Biotech, 5, 455-463.
Bjarnadottir, M., Adalbjornsson, B. V., Nilsson, A., Slizyte, R., Roleda, M. Y., Hreggvidsson, G. O., Fridjonsson, O. H., and Jonsdottir, R. (2018). Palmaria palmata as an alternative protein source: Enzymatic protein extraction, amino acid composition, and nitrogen-to-protein conversion factor. Journal of Applied Phycology, 30, 2061-2070.
Bleakley, S., and Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Foods, 6, 33.
Bodik, I., Blst'akova, A., Dancova, L., and Sedlacek, S. (2009). Comparison of flat-sheet and hollow-fiber membrane modules in municipal wastewater treatment. Polish Journal of Environmental Studies, 18, 331-340.
Bolton, J. J., Robertson-Andersson, D. V., Shuuluka, D., and Kandjengo, L. (2009). Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: A SWOT analysis. Journal of Applied Phycology, 21, 575-583.
Brozek, J., Benesova, V., Malinova, L., Kalouskova, R., Sanda, K., and Ledrova, Z. (2014). Stability of poly (L-lactic acid) in textile applications. Polymers for Advanced Technologies, 25, 934-939.
Buchert, J., Niemela, K., Puls, J., and Poutanen, K. (1990). Improvement in the fermentability of steamed hemicellulose hydrolysate by ion exclusion. Process Biochemistry International, 25, 176-180.
Burgos-Rubio, C. N., Okos, M. R., and Wankat, P. C. (2000). Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnology Progress, 16, 305-314.
Burns, P., Vinderola, G., Molinari, F., and Reinheimer, J. (2008). Suitability of whey and buttermilk for the growth and frozen storage of probiotic Lactobacilli. International Journal of Dairy Technology, 61, 156-164.
Buyukkileci, A. O., and Harsa, S. (2004). Batch production of L (+) lactic acid from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology and Biotechnology, 79, 1036-1040.
Calderon, M., Loiseau, G., and Guyot, J. P. (2001). Nutritional requirements and simplified cultivation medium to study growth and energetics of a sourdough lactic acid bacterium Lactobacillus fermentum Ogi E1 during heterolactic fermentation of starch. Journal of Applied Microbiology, 90, 508-516.
Caylak, B., and Sukan, F. V. (1998). Comparison of different production processes for bioethanol. Turkish Journal of Chemistry, 22, 351-359.
Champagne, C. P. (2009). Some Technological Challenges in The Addition of Probiotic Bacteria to Foods. Springer: New York, pp. 761-804
Chang, H. N., Kim, N. J., Kang, J., Jeong, C. M., Choi, J. D. R., Fei, Q., Kim, B. J., Kwon, S., Lee, S. Y., and Kim, J. (2011). Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess and Biosystems Engineering, 34, 419-431.
Chen, C. C., Wu, C. H., Wu, J. J., Chiu, C. C., Wong, C. H., Tsai, M. L., and Lin, H. T. V. (2015). Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane. Process Biochemistry, 50, 1509-1515.
Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., and Cheng, Y. (2010). Review of biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2, 1-30.
Cheng, K.-K., Zhang, J.-A., Liu, D.-H., Sun, Y., Yang, M.-D., and Xu, J.-M. (2006). Production of 1, 3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnology Letters, 28, 1817-1821.
Cheng, P., Mueller, R., Jaeger, S., Bajpai, R., and Iannotti, E. (1991). Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus. Journal of Industrial Microbiology, 7, 27-34.
Choi, G. W., Kang, H. W., and Moon, S. K. (2009). Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Applied Microbiology and Biotechnology, 84, 261-269.
Chramostova, J., Mosnova, R., Lisova, I., Pesek, E., Drbohlav, J., and Nemeckova, I. (2014). Influence of cultivation conditions on the growth of Lactobacillus acidophilus, Bifidobacterium sp., and Streptococcus thermophilus, and on the production of organic acids in fermented milks. Czech Journal of Food Sciences, 32, 422-429.
Clark, T. A., and Mackie, K. L. (1984). Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. Journal of Chemical Technology and Biotechnology, 34, 101-110.
Coutu, D. L., Yousefi, A. M., and Galipeau, J. (2009). Three-dimensional porous scaffolds at the crossroads of tissue engineering and cell-based gene therapy. Journal of Cellular Biochemistry, 108, 537-546.
Dashti, M. G., Abdeshahian, P., Yusoff, W. M. W., Kalil, M. S., and Hamid, A. A. (2014). Repeated batch fermentation biotechnology for the biosynthesis of lipid and gamma-linolenic acid by Cunninghamella bainieri 2A1. Biomed Research International, 2014.
Datta, R., and Henry, M. (2006). Lactic acid: Recent advances in products, processes and technologies - A review. Journal of Chemical Technology and Biotechnology, 81, 1119-1129.
Datta, R., Tsai, S. P., Bonsignore, P., Moon, S. H., and Frank, J. R. (1995). Technological and economic - Potential of poly (lactic acid) and lactic-acid derivatives. Federation of European Microbiological Societies Microbiology Reviews, 16, 221-231.
Dave, R. I., and Shah, N. P. (1996). Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria. Journal of Dairy Science, 79, 1529-1536.
Desbois, A. P., and Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85, 1629-1642.
Dey, P., and Pal, P. (2012). Direct production of L (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. Journal of Membrane Science, 389, 355-362.
Djeghri-Hocine, B., Boukhemis, M., Zidoune, M. N., and Amrane, A. (2007). Evaluation of de-lipidated egg yolk and yeast autolysate as growth supplements for lactic acid bacteria culture. International Journal of Dairy Technology, 60, 292-296.
Djukic-Vukovic, A. P., Jokic, B. M., Kocic-Tanackov, S. D., Pejin, J. D., and Mojovic, L. V. (2016). Mg-modified zeolite as a carrier for Lactobacillus rhamnosus in L(+) lactic acid production on distillery wastewater. Journal of the Taiwan Institute of Chemical Engineers, 59, 262-266.
Djukic-Vukovic, A. P., Mojovic, L. V., Jokic, B. M., Nikolic, S. B., and Pejin, J. D. (2013). Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite. Bioresource Technology, 135, 454-458.
Djukic-Vukovic, A. P., Mojovic, L. V., Vukasinovic-Sekulic, M. S., Rakin, M. B., Nikolic, S. B., Pejin, J. D., and Bulatovic, M. L. (2012). Effect of different fermentation parameters on L-lactic acid production from liquid distillery stillage. Food Chemistry, 134, 1038-1043.
Dong, X. Y., Bai, S., and Sun, Y. (1996). Production of L (+)-lactic acid with Rhizopus oryzae immobilized in polyurethane foam cubes. Biotechnology Letters, 18, 225-228.
Donnell, M. M. O., Forde, B. M., Neville, B., Ross, P. R., and Toole, P. W. O. (2011). Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microbial Cell Factories, 10.
Ebnesajjad, S. (2012). Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications. Elseviver/William Andrew: Oxford, Waltham, pp. 213-263
Elezi, O., Kourkoutas, Y., Koutinas, A. A., Kanellaki, M., Bezirtzoglou, E., Barnett, Y. A., and Nigam, P. (2003). Food additive lactic acid production by immobilized cells of Lactobacillus brevis on delignified cellulosic material. Journal of Agricultural and Food Chemistry, 51, 5285-5289.
FAO. (2016). The State of World Fisheries and Aquaculture 2016. Food and Agricultural Organization of the United Nations, Rome, Italy.
Farooq, U., Anjum, F. M., Zahoor, T., Sajjad-ur-Rahman, Randhawa, M. A., Ahmed, A., and Akram, K. (2012). Optimization of lactic acid production from cheap raw material: Sugarcane molasses. Pakistan Journal of Botany, 44, 333-338.
Fitzpatrick, J. J., Ahrens, M., and Smith, S. (2001). Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate. Process Biochemistry, 36, 671-675.
Fleurence, J. (1999). Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends in Food Science and Technology, 10, 25-28.
Fleurence, J., Massiani, L., Guyader, O., and Mabeau, S. (1995). Use of enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmata. Journal of Applied Phycology, 7, 393.
Foucaud, C., Francois, A., and Richard, J. (1997). Development of a chemically defined medium for the growth of Leuconostoc mesenteroides. Applied and Environmental Microbiology, 63, 301-304.
Fukushima, K., Sogo, K., Miura, S., and Kimura, Y. (2004). Production of D-lactic acid by bacterial fermentation of rice starch. Macromolecular Bioscience, 4, 1021-1027.
Galbe, M., and Zacchi, G. (2002). A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology, 59, 618-628.
Gandhi, A., and Shah, N. P. (2014). Effects of salt concentration and pH on structural and functional properties of Lactobacillus acidophilus: FT-IR spectroscopic analysis. International Journal of Food Microbiology, 173, 41-47.
Gao, C., Ma, C. Q., and Xu, P. (2011). Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances, 29, 930-939.
Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9, 63-84.
Gaudreau, H., Renard, N., Champagne, C. P., and Van Horn, D. (2002). The evaluation of mixtures of yeast and potato extracts in growth media for biomass production of lactic cultures. Canadian Journal of Microbiology, 48, 626-634.
Ghorpade, V. M., Gennadios, A., and Hanna, M. A. (2001). Laboratory composting of extruded poly (lactic acid) sheets. Bioresource Technology, 76, 57-61.
Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., and Bogel-Lukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775-4800.
Goderska, K., Nowak, J., and Czarnecki, Z. (2008). Comparision of growth of Lactobacillus acidophilus and Bifidobacterium Bifidum species in media suplemented with selected saccharides including prebiotics. Acta Scientiarum Polonorum Technologia Alimentaria, 7, 5-20.
Goksungur, Y., Gunduz, M., and Harsa, S. (2005). Optimization of lactic acid production from whey by L. casei NRRL B-441 immobilized in chitosan stabilized Ca-alginate beads. Journal of Chemical Technology and Biotechnology, 80, 1282-1290.
Gomes, A. M. P., and Malcata, F. X. (1999). Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Science and Technology, 10, 139-157.
Goncalves, L. M. D., Barreto, M. T. O., Xavier, A. M. R. B., Carrondo, M. J. T., and Klein, J. (1992). Inert supports for lactic acid fermentation a technological assessment. Applied Microbiology and Biotechnology, 38, 305-311.
Guan, N. Z., Liu, L., Shin, H. D., Chen, R. R., Zhang, J., Li, J. H., Du, G. C., Shi, Z. P., and Chen, J. (2013). Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application. Journal of Biotechnology, 167, 56-63.
Gullon, B., Yanez, R., Alonso, J. L., and Parajo, J. C. (2008). L-lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology, 99, 308-319.
Guoqiang, D., Kaul, R., and Mattiasson, B. (1992). Immobilization of Lactobacillus casei cells to ceramic material pretreated with polyethylenimine. Applied Microbiology and Biotechnology, 37, 305-310.
Hébert, E. M., Raya, R. R., and de Giori, G. S. (2004a). Environmental Microbiology. Humana Press, pp. 139-148
Hébert, E. M., Raya, R. R., and De Giori, G. S. (2004b). Nutritional requirements of Lactobacillus delbrueckii subsp. lactis in a chemically defined medium. Current Microbiology, 49, 341-345.
Habova, V., Melzoch, K., Rychtera, M., and Sekavova, B. (2004). Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth. Desalination, 162, 361-372.
Harnedy, P. A., and FitzGerald, R. J. (2013). Extraction of protein from the macroalga Palmaria palmata. Lebensmittel-Wissenschaft and Technologie - Food Science and Technology, 51, 375-382.
Haros, M., Bielecka, M., Honke, J., and Sanz, Y. (2008). Phytate-degrading activity in lactic acid bacteria. Polish Journal of Food and Nutrition Sciences, 58.
Harrigan, W. F., and McCance, M. E. (1976). Laboratory Methods in Food and Dairy Microbiology. 1st Edition. Academic Press Inc Ltd., Cambridge, Massachusetts, U.S.A.
Hayek, S. A., and Ibrahim, S. A. (2013). Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Sciences, 4, 73-87.
Hofvendahl, K., and Hahn-Hagerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26, 87-107.
Holdt, S. L., and Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23, 543-597.
Hong, A. A., Cheng, K. K., Peng, F., Zhou, S., Sun, Y., Liu, C. M., and Liu, D. H. (2009). Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. Journal of Chemical Technology and Biotechnology, 84, 1576-1581.
Hu, J. L., Zhang, Z. T., Lin, Y. X., Zhao, S. M., Mei, Y. X., Liang, Y. X., and Peng, N. (2015). High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresource Technology, 182, 251-257.
Huang, L. P., Jin, B., Lant, P., and Zhou, J. T. (2005). Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochemical Engineering Journal, 23, 265-276.
Huang, Z. M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63, 2223-2253.
Hujanen, M., and Linko, Y. Y. (1996). Effect of temperature and various nitrogen sources on L (+) lactic acid production by Lactobacillus casei. Applied Microbiology and Biotechnology, 45, 307-313.
Idris, A., and Suzana, W. (2006). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochemistry, 41, 1117-1123.
Jenkins, J. K., and Courtney, P. D. (2003). Lactobacillus growth and membrane composition in the presence of linoleic or conjugated linoleic acid. Canadian Journal of Microbiology, 49, 51-57.
Jeong, S. Y., Trinh, L. T. P., Lee, H. J., and Lee, J. W. (2014). Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption. Bioresource Technology, 152, 444-449.
Jin, Y. L., and Speers, R. A. (1998). Flocculation of Saccharomyces cerevisiae. Food Research International, 31, 421-440.
John, R. P., Anisha, G. S., Nampoothiri, K. M., and Pandey, A. (2009). Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances, 27, 145-152.
John, R. P., Anisha, G. S., Nampoothiri, K. M., and Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102, 186-193.
John, R. P., Nampoothiri, K. M., and Pandey, A. (2006). Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 41, 759-763.
John, R. P., Nampoothiri, K. M., and Pandey, A. (2007). Fermentative production of lactic acid from biomass: An overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 74, 524-534.
Kadam, S. U., Álvarez, C., Tiwari, B. K., and O'Donnell, C. P. (2017). Extraction and characterization of protein from Irish brown seaweed Ascophyllum nodosum. Food Research International, 99, 1021-1027.
Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49, 209-224.
Kankaanpaa, P., Yang, B., Kallio, H., Isolauri, E., and Salminen, S. (2004). Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli. Applied and Environmental Microbiology, 70, 129-136.
Karamanlioglu, M., and Robson, G. D. (2013). The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 98, 2063-2071.
Karel, S. F., Libicki, S. B., and Robertson, C. R. (1985). The immobilization of whole cells: Engineering principles. Chemical Engineering Science, 40, 1321-1354.
Kim, J. H., Shoemaker, S. P., and Mills, D. A. (2009). Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology Society Journals, 155, 1351-1359.
Kim, Y. H., and Moon, S. H. (2001). Lactic acid recovery from fermentation broth using one-stage electrodialysis. Journal of Chemical Technology and Biotechnology, 76, 169-178.
Klinke, H. B., Thomsen, A. B., and Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10-26.
Kosseva, M. R., Panesar, P. S., Kaur, G., and Kennedy, J. F. (2009). Use of immobilised biocatalysts in the processing of cheese whey. International Journal of Biological Macromolecules, 45, 437-447.
Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., and Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiology, 21, 377-397.
Krischke, W., Schroder, M., and Trosch, W. (1991). Continuous production of L-lactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei. Applied Microbiology and Biotechnology, 34, 573-578.
Kyuchoukov, G., Marinova, M., Molinier, J., Albet, J., and Malmary, G. (2001). Extraction of lactic acid by means of a mixed extractant. Industrial and Engineering Chemistry Research, 40, 5635-5639.
Lahaye, M., Jegou, D., and Buleon, A. (1994). Chemical characteristics of insoluble glucans from the cell wall of the marine green alga Ulva lactuca (L.) Thuret. Carbohydrate Research, 262, 115-125.
Lahaye, M., and Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8, 1765-1774.
Lahl, W. J. (1994). Enzymatic production of protein hydrolysates for food use. Food Science, 48, 68-71.
Lahtinen, S., Ouwehand, A. C., Salminen, S., and Von Wright, A. (2011). Lactic Acid Bacteria: Microbiological and Functional Aspects. 4th Edition. CRC Press, pp. 77-86
Laopaiboon, P., Thani, A., Leelavatcharamas, V., and Laopaiboon, L. (2010). Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresource Technology, 101, 1036-1043.
Lechiancole, T., Ricciardi, A., and Parente, E. (2002). Optimization of media and fermentation conditions for the growth of Lactobacillus sakei. Annals of Microbiology, 52, 257-274.
Lee, J., Lee, S. Y., Park, S., and Middelberg, A. P. J. (1999). Control of fed-batch fermentations. Biotechnology Advances, 17, 29-48.
Lee, K. H., Choi, I. S., Kim, Y. G., Yang, D. J., and Bae, H. J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technology, 102, 8191-8198.
Lee, K. W., Baick, S. C., Chung, W. H., and Kim, H. W. (2003). Structural observation of microencapsulated Lactobacillus acidophilus by optical and scanning electron microscopy. Food Science and Biotechnology, 12, 13-17.
Letort, C., and Juillard, V. (2001). Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. Journal of Applied Microbiology, 91, 1023-1029.
Li, C., Zhang, G. F., Mao, X., Wang, J. Y., Duan, C. Y., Wang, Z. J., and Liu, L. B. (2016). Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass. Journal of Dairy Science, 99, 4243-4250.
Li, K., and Chan, K. (1983). Production and properties of alpha-glucosidase from Lactobacillus acidophilus. Applied and Environmental Microbiology, 46, 1380-1387.
Li, Z., Lu, J. K., Yang, Z. X., Han, L., and Tan, T. W. (2012). Utilization of white rice bran for production of L-lactic acid. Biomass and Bioenergy, 39, 53-58.
Liaud, N., Rosso, M. N., Fabre, N., Crapart, S., Herpoel-Gimbert, I., Sigoillot, J. C., Raouche, S., and Levasseur, A. (2015). L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae. Microbial Cell Factories, 14, 66.
Lin, Y. S., Lee, W. C., Duan, K. J., and Lin, Y. H. (2013). Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus. Applied Energy, 105, 389-394.
Liong, M. T., and Shah, N. P. (2005). Optimization of growth of Lactobacillus casei ASCC 292 and production of organic acids in the presence of fructooligosaccharide and maltodextrin. Journal of Food Science, 70, 113-120.
Litchfield, J. H. (1996). Microbiological production of lactic acid. Advances in Applied Microbiology, 42, 45-95.
Liu, S. Q. (2003). Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. International Journal of Food Microbiology, 83, 115-131.
Lv, X. P., Liu, G. F., Sun, X. M., Chen, H. Y., Sun, J. H., and Feng, Z. (2017). Nutrient consumption patterns of Lactobacillus acidophilus KLDS 1.0738 in controlled pH batch fermentations. Journal of Dairy Science, 100, 5188-5194.
Lynd, L. R., Weimer, P. J., van Zyl, W. H., and Pretorius, I. S. (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 739-739.
Maas, R. H. W., Bakker, R. R., Jansen, M. L. A., Visser, D., De Jong, E., Eggink, G., and Weusthuis, R. A. (2008). Lactic acid production from lime-treated wheat straw by Bacillus coagulans: Neutralization of acid by fed-batch addition of alkaline substrate. Applied Microbiology and Biotechnology, 78, 751-758.
Maehre, H. K., Jensen, I. J., and Eilertsen, K. E. (2016). Enzymatic pre-treatment increases the protein bioaccessibility and extractability in Dulse (Palmaria palmata). Marine Drugs, 14, 196.
Mahajan, P., Desai, K., and Lele, S. (2012). Production of cell membrane-bound α-and β-glucosidase by Lactobacillus acidophilus. Food and Bioprocess Technology, 5, 706-718.
Mariam, I., Manzoor, K., Ali, S., and Ikram-Ul-Haq. (2009). Enhanced production of ethanol from free and immobilized Saccharomyces cerevisiae under stationary culture. Pakistan Journal of Botany, 41, 821-833.
Marques, S., Santos, J. A. L., Girio, F. M., and Roseiro, J. C. (2008). Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochemical Engineering Journal, 41, 210-216.
Marrion, O., Schwertz, A., Fleurence, J., Guéant, J. L., and Villaume, C. (2003). Improvement of the digestibility of the proteins of the red alga Palmaria palmata by physical processes and fermentation. Food/Nahrung, 47, 339-344.
Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., and Ingram, L. O. (2000). Effects of Ca(OH)2 treatments ("overliming") on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnology and Bioengineering, 69, 526-536.
Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., Gonzalez, J. M. D., Converti, A., and Oliveira, R. P. D. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science and Technology, 30, 70-83.
Meinita, M. D. N., Marhaeni, B., Winanto, T., Jeong, G. T., Khan, M. N. A., and Hong, Y. K. (2013). Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. Journal of Applied Phycology, 25, 1957-1961.
Mesnildrey, L., Jacob, C., Frangoudes, K., Reunavot, M., and Lesueur, M. (2012). Seaweed industry in France. Pole Halieutique Agrocampus Ouest. Rennes, France.
Moretro, T., Hagen, B. F., and Axelsson, L. (1998). A new, completely defined medium for meat lactobacilli. Journal of Applied Microbiology, 85, 715-722.
Nahak, S., Nahak, G., Pradhan, I., and Sahu, R. (2011). Bioethanol from marine algae: A solution to global warming problem. Journal of Applied Environmental and Biological Sciences, 1, 74-80.
Nampoothiri, K. M., Nair, N. R., and John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101, 8493-8501.
Nguyen, C. M., Kim, J. S., Hwang, H. J., Park, M. S., Choi, G. J., Choi, Y. H., Jang, K. S., and Kim, J. C. (2012). Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresource Technology, 110, 552-559.
Nikolaisen, L., Jensen, P. D., Bech, K. S., Dahl, J., Busk, J., Brødsgaard, T., Rasmussen, M. B., Bruhn, A., Bjerre, A.-B., and Nielsen, H. B. (2011). Energy production from marine biomass (Ulva lactuca). Danish Technological Institute. Tasstrup, Denmark.
O’Donnell, M. M., Forde, B. M., Neville, B., Ross, P. R., and O’Toole, P. W. (2011). Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. BioMed Central.
Oh, H., Wee, Y. J., Yun, J. S., Han, S. H., Jung, S. W., and Ryu, H. W. (2005). Lactic acid production from agricultural resources as cheap raw materials. Bioresource Technology, 96, 1492-1498.
Olsson, L., Soerensen, H. R., Dam, B. P., Christensen, H., Krogh, K. M., and Meyer, A. S. (2006). Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 129, 117-129.
Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernandez, J., Bozzo, C., Navarrete, E., Osorio, A., and Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99, 98-104.
Oshiro, M., Shinto, H., Tashiro, Y., Miwa, N., Sekiguchi, T., Okamoto, M., Ishizaki, A., and Sonomoto, K. (2009). Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 108, 376-384.
Ou, K. L., Chen, C. S., Lin, L. H., Lu, J. C., Shu, Y. C., Tseng, W. C., Yang, J. C., Lee, S. Y., and Chen, C. C. (2011a). Membranes of epitaxial-like packed, super aligned electrospun micron hollow poly (L-lactic acid) (PLLA) fibers. European Polymer Journal, 47, 882-892.
Ou, M. S., Ingram, L. O., and Shanmugam, K. T. (2011b). L (+)-lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. Journal of Industrial Microbiology and Biotechnology, 38, 599-605.
Ouyang, J., Ma, R., Zheng, Z. J., Cal, C., Zhang, M., and Jiang, T. (2013). Open fermentative production of L-lactic acid by Bacillus sp. strain NLO1 using lignocellulosic hydrolyzates as low-cost raw material. Bioresource Technology, 135, 475-480.
Paiva, L., Lima, E., Neto, A. I., Marcone, M., and Baptista, J. (2017). Nutritional and functional bioactivity value of selected Azorean macroalgae: Ulva compressa, Ulva rigida, Gelidium microdon, and Pterocladiella capillacea. Journal of Food Science, 82, 1757-1764.
Panesar, P. S., Kennedy, J. F., Gandhi, D. N., and Bunko, K. (2007). Bioutilisation of whey for lactic acid production. Food Chemistry, 105, 1-14.
Park, J. K., and Chang, H. N. (2000). Microencapsulation of microbial cells. Biotechnology Advances, 18, 303-319.
Partanen, L., Marttinen, N., and Alatossava, T. (2001). Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Systematic and Applied Microbiology, 24, 500-506.
Peinado, I., Giron, J., Koutsidis, G., and Ames, J. M. (2014). Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Research International, 66, 36-44.
Percival, S. S. (1979). Fish lipid/phosphollpid data challenged. Journal of Food Science, 44, iv-v.
Pilkington, P. H., Margaritis, A., Mensour, N. A., and Russell, I. (1998). Fundamentals of immobilised yeast cells for continuous beer fermentation: A review. Journal of the Institute of Brewing, 104, 19-31.
Pimentel, D., and Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. American Journal of Clinical Nutrition, 78, 660-663.
Pirian, K., Piri, K., Sohrabipour, J., and Blomster, J. (2018). Three species of Ulva (Ulvophyceae) from the Persian Gulf as potential sources of protein, essential amino acids and fatty acids. Phycological Research, 66, 149-154.
Qureshi, N., Saha, B. C., Hector, R. E., and Cotta, M. A. (2008). Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass and Bioenergy, 32, 1353-1358.
Radosavljevic, M., Pejin, J., Pribic, M., Kocic-Tanackov, S., Romanic, R., Mladenovic, D., Djukic-Vukovic, A., and Mojovic, L. (2019). Utilization of brewing and malting by-products as carrier and raw materials in L-(+)-lactic acid production and feed application. Applied Microbiology and Biotechnology, 103, 3001-3013.
Reale, A., Mannina, L., Tremonte, P., Sobolev, A. P., Succi, M., Sorrentino, E., and Coppola, R. (2004). Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: A 31P NMR study. Journal of Agricultural and Food Chemistry, 52, 6300-6305.
Reddy, G., Altaf, M., Naveena, B. J., Venkateshwar, M., and Kumar, E. V. (2008). Amylolytic bacterial lactic acid fermentation - A review. Biotechnology Advances, 26, 22-34.
Richter, K., and Berthold, C. (1998). Biotechnological conversion of sugar and starchy crops into lactic acid. Journal of Agricultural Engineering Research, 71, 181-191.
Robic, A., Rondeau-Mouro, C., Sassi, J. F., Lerat, Y., and Lahaye, M. (2009). Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohydrate Polymers, 77, 206-216.
Rosen, H. (1957). A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics, 67, 10-15.
Rossi, D. M., Flores, S. H., Heck, J. X., and Ayub, M. A. Z. (2009). Production of high-protein hydrolysate from poultry industry residue and their molecular profiles. Food Biotechnology, 23, 229-242.
Roukas, T., and Kotzekidou, P. (1998). Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme and Microbial Technology, 22, 199-204.
Sadasiva Rao, K., and Seshagiri, V. (1998). Protein concentration and alkaline phosphatase activity in uterine flushing from cows affected with endometritis. Indian Veterinary Journal, 75, 369-370.
Sarasua, J. R., Prud'homme, R. E., Wisniewski, M., Le Borgne, A., and Spassky, N. (1998). Crystallization and melting behavior of polylactides. Macromolecules, 31, 3895-3905.
Sari, Y. W., Mulder, W. J., Sanders, J. P., and Bruins, M. E. (2015). Towards plant protein refinery: Review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal, 10, 1138-1157.
Savijoki, K., Ingmer, H., and Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 71, 394-406.
Schaechter, M. (2009). Encyclopedia of Microbiology. 3rd Edition.Academic Press, pp.767-781.
Schepers, A. W., Thibault, J., and Lacroix, C. (2002). Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part II: Kinetic modeling and model validation. Enzyme and Microbial Technology, 30, 187-194.
Senouci-Rezkallah, K., Schmitt, P., and Jobin, M. P. (2011). Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiology, 28, 364-372.
Singh, S. K., Ahmed, S. U., and Pandey, A. (2006). Metabolic engineering approaches for lactic acid production. Process Biochemistry, 41, 991-1000.
Singhvi, M., Joshi, D., Adsul, M., Varma, A., and Gokhale, D. (2010). D-(-)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chemistry, 12, 1106-1109.
Sodergard, A., and Stolt, M. (2002). Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science, 27, 1123-1163.
Sreenath, H. K., Moldes, A. B., Koegel, R. G., and Straub, R. J. (2001). Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. Journal of Bioscience and Bioengineering, 92, 518-523.
Sun, Y., Li, Y. L., Bai, S., Yang, H., and Hu, Z. D. (1998). Stability of immobilized R. oryzae in repetitive batch productions of L (+)-lactic acid: Effect of inorganic salts. Bioprocess Engineering, 19, 155-157.
Suna, X. H., Wang, Q. H., Zhao, W. C., Ma, H. Z., and Sakata, K. (2006). Extraction and purification of lactic acid from fermentation broth by esterification and hydrolysis method. Separation and Purification Technology, 49, 43-48.
Tabasco, R., Paarup, T., Janer, C., Pelaez, C., and Requena, T. (2007). Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobicillus subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. International Dairy Journal, 17, 1107-1114.
Taillandier, P., Gilis, F., Portugal, F. R., Laforce, P., and Strehaiano, P. (1996). Influence of medium composition, pH and temperature on the growth and viability of Lactobacillus acidophilus. Biotechnol Lett, 18, 775-780.
Tang, A. L., Wilcox, G., Walker, K. Z., Shah, N. P., Ashton, J. F., and Stojanovska, L. (2010). Phytase activity from Lactobacillus spp. in calcium‐fortified soymilk. Journal of Food Science, 75, M373-M376.
Tango, M. S. A., and Ghaly, A. E. (2002). A continuous lactic acid production system using an immobilized packed bed of Lactobacillus helveticus. Applied Microbiology and Biotechnology, 58, 712-720.
Tashiro, Y., Kaneko, W., Sun, Y. Q., Shibata, K., Inokuma, K., Zendo, T., and Sonomoto, K. (2011). Continuous D-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Applied Microbiology and Biotechnology, 89, 1741-1750.
Tay, A., and Yang, S. T. (2002). Production of L (+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnology and Bioengineering, 80, 1-12.
Terrade, N., Noel, R., Couillaud, R., and de Orduna, R. M. (2009). A new chemically defined medium for wine lactic acid bacteria. Food Research International, 42, 363-367.
Van Krimpen, M., Bikker, P., Van der Meer, I., Van der Peet-Schwering, C., and Vereijken, J. (2013). Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products. Wageningen UR Livestock Research.
Vazquez, J. A., Gonzalez, M. P., and Murado, M. A. (2004). Peptones from autohydrolysed fish viscera for nisin and pediocin production. Journal of Biotechnology, 112, 299-311.
Velazquez, A. C., Pometto, A. L., Ho, K. L. G., and Demirci, A. (2001). Evaluation of plastic-composite supports in repeated fed-batch biofilm lactic acid fermentation by Lactobacillus casei. Applied Microbiology and Biotechnology, 55, 434-441.
Verstrepen, K. J., Derdelinckx, G., Verachtert, H., and Delvaux, F. R. (2003). Yeast flocculation: What brewers should know. Applied Microbiology and Biotechnology, 61, 197-205.
Vieira, E. F., Soares, C., Machado, S., Correia, M., Ramalhosa, M. J., Oliva-teles, M. T., Carvalho, A. P., Domingues, V. F., Antunes, F., and Oliveira, T. A. C. (2018). Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chemistry, 269, 264-275.
Von Wright, A., and Axelsson, L. (2012). Lactic Acid Bacteria: Microbiological and Functional Aspects. CRC Press: London, pp. 1-17
Wallace, J. S. (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture Ecosystems and Environment, 82, 105-119.
Wang, L. M., Zhao, B., Liu, B., Yu, B., Ma, C. Q., Su, F., Hua, D. L., Li, Q. G., Ma, Y. H., and Xu, P. (2010). Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101, 7908-7915.
Wasewar, K. L. (2005). Separation of lactic acid: Recent advances. Chemical and Biochemical Engineering Quarterly, 19, 159-172.
Watanabe, I., Miyata, N., Ando, A., Shiroma, R., Tokuyasu, K., and Nakamura, T. (2012). Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. Bioresource Technology, 123, 695-698.
Wee, Y. J., Kim, J. N., and Ryu, H. W. (2006). Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 44, 163-172.
Wee, Y. J., and Ryu, H. W. (2009). Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresource Technology, 100, 4262-4270.
Wee, Y. J., Yun, J. S., Park, D. H., and Ryu, H. W. (2004). Biotechnological production of L (+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis. Biotechnology Letters, 26, 71-74.
Wegkamp, A., Teusink, B., de Vos, W. M., and Smid, E. J. (2010). Development of a minimal growth medium for Lactobacillus plantarum. Letters in Applied Microbiology, 50, 57-64.
White, S. R., Broadbent, J. R., Oberg, C. J., and McMahon, D. J. (2003). Effect of Lactobacillus helveticus and Propionibacterium freudenrichii ssp. shermanii combinations on propensity for split defect in Swiss cheese. Journal of Dairy Science, 86, 719-727.
Wisselink, H. W., Weusthuis, R. A., Eggink, G., Hugenholtz, J., and Grobben, G. J. (2002). Mannitol production by lactic acid bacteria: A review. International Dairy Journal, 12, 151-161.
Wong, K., and Cheung, P. C. (2001). Influence of drying treatment on three Sargassum species. Journal of Applied Phycology, 13, 43-50.
Wood, B. J., and Holzapfel, W. (1992). The Genera of Lactic Acid Bacteria. Springer Science and Business Media, pp.19-54
Wu, F. C., Wu, J. Y., Liao, Y. J., Wang, M. Y., and Shih, I. L. (2014). Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresource Technology, 156, 123-131.
Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., and Attia, H. (2011). Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chemistry, 128, 895-901.
Yang, J. C., Lee, S. Y., Tseng, W. C., Shu, Y. C., Lu, J. C., Shie, H. S., and Chen, C. C. (2012). Formation of highly aligned, single-layered, hollow fibrous assemblies and the fabrication of large pieces of PLLA membranes. Macromolecular Materials and Engineering, 297, 115-122.
Yin, H., Yu, S., Casey, P. S., and Chow, G. M. (2010). Synthesis and properties of poly (D, L-lactide) drug carrier with maghemite nanoparticles. Materials Science and Engineering C-Materials for Biological Applications, 30, 618-623.
Yin, L. J., Pan, C. L., and Jiang, S. T. (2002). Effect of lactic acid bacterial fermentation on the characteristics of minced mackerel. Journal of Food Science, 67, 786-792.
Yin, P. M., Nishina, N., Kosakai, Y., Yahiro, K., Park, Y., and Okabe, M. (1997). Enhanced production of L (+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. Journal of Fermentation and Bioengineering, 84, 249-253.
Yoon, J. J., Kim, Y. J., Kim, S. H., Ryu, H. J., Choi, J. Y., Kim, G. S., and Shin, M. K. (2010). Production of polysaccharides and corresponding sugars from red seaweed. Advanced Materials Research, 93, 463-466.
Yu, L., Lei, T., Ren, X. D., Pei, X. L., and Feng, Y. (2008). Response surface optimization of L-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochemical Engineering Journal, 39, 496-502.
Zhang, B. C., and Zhang, X. W. (2013). Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnology Progress, 29, 1230-1238.
Zhang, Y., Cong, W., and Shi, S. Y. (2011). Repeated fed-batch lactic acid production in a packed bed-stirred fermentor system using a pH feedback feeding method. Bioprocess and Biosystems Engineering, 34, 67-73.
Zhang, Y. M., Chen, X. R., Qi, B. K., Luo, J. Q., Shen, F., Su, Y., Khan, R., and Wan, Y. H. (2014). Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresource Technology, 163, 160-166.
Zhang, Y. X., and Vadlani, P. V. (2015). Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Journal of Bioscience and Bioengineering, 119, 694-699.
Zhao, K., Qiao, Q. G., Chu, D. Q., Gu, H. Q., Dao, T. H., Zhang, J., and Bao, J. (2013). Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresource Technology, 135, 481-489.
Zhao, Z. J., Xie, X. N., Wang, Z., Tao, Y. C., Niu, X. D., Huang, X. R., Liu, L., and Li, Z. Q. (2016). Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production. Journal of Bioscience and Bioengineering, 121, 645-651.
Zheng, L., Zhao, Y. J., Xiao, C. Q., Sun-Waterhouse, D., Zhao, M. M., and Su, G. W. (2015). Mechanism of the discrepancy in the enzymatic hydrolysis efficiency between defatted peanut flour and peanut protein isolate by Flavorzyme. Food Chemistry, 168, 100-106.
Ziadi, M., Rezouga, F., Bouallagui, H., Baati, L., Ben Othman, N., Thonart, P., and Hamdi, M. (2010). Kinetic study of Lactococcus lactis strains (SLT6 and SLT10) growth on papain-hydrolysed whey. World Journal of Microbiology and Biotechnology, 26, 2223-2230.