跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/08 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇致安
研究生(外文):Su, Zhi-An
論文名稱:建置臺灣水產品重金屬濃度背景資料庫與評估潛在人體健康風險
論文名稱(外文):Establishing Background Concentration Database for Heavy Metals in Aquatic Product and Assessing the Potential Human Health Risk
指導教授:凌明沛
指導教授(外文):Ling, Min-Pei
口試委員:凌明沛林怡君林嬪嬪蕭泉源冉繁華
口試委員(外文):Ling, Min-PeiLin, Yi-JunLin, Pin-PinShiau, Chyuan-YuanNan, Fan-Hua
口試日期:2019-07-10
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:145
中文關鍵詞:遠洋魚類藻類重金屬無機砷水產品食品安全風險評估
外文關鍵詞:Pelagic FishAlgaeHeavy MetalsInorganic ArsenicAquatic ProductFood Safety Risk Assessment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究根據臺灣衛生福利部食品藥物管理署(Taiwan Food and Drug Administration, TFDA)之水產動物類衛生標準與藻類食品衛生標準,並彙整行政院農委會漁業署之生產量、進口量、及出口量統計年報,將水產品區分為7大類,分別為遠洋魚類、近海魚類、其他魚類、甲殼類、貝類、頭足類、及藻類,據此規劃新鮮水產品與水產製品代表性清單。並根據行政院農委會漁業署公告所列漁港將全國行政區域劃分為北、中、南、及東,共4區,進行水產品採樣。非進口水產品根據生產量、進口量、出口量統計年報排名前3縣市進行採買,進口水產品與水產製品根據臺灣4區人口數最多縣市進行採買,生與熟之新鮮水產品與水產製品總計556件。本研究分析總砷、無機砷、鎘、鈷、鉻、銅、鐵、銦、錳、鎳、鉛、鍶、鉈、及鋅14項重金屬濃度,並以熟新鮮水產品與水產製品中重金屬濃度進行食品安全風險評估。結果顯示,生食樣品中日本銀帶鯡、鱙仔、海扇貝、貽貝、螺、及章魚,鎘平均濃度皆超過TFDA訂定之食品中污染物質及毒素衛生標準,其中以螺之鎘平均濃度8.20 mg/kg為最高,超過貝類標準1 mg/kg最多。整體而言,各暴露族群攝入水產品中鎘所造成之非致癌風險皆高於其他重金屬,以19-64歲暴露族群為例,攝入水產品中鎘所造成之第90百分位非致癌風險超過美國環保署建議的參考劑量3.27倍,可能會引發腎臟疾病。此外,本研究亦評估各暴露族群攝入水產品中無機砷與鉛之致癌風險,其中無機砷對人體造成之致癌風險大於鉛,以19-64歲暴露族群攝入水產品中無機砷的第90百分位致癌風險來看,每十萬人中至少有1個人經長期食用而造成罹患皮膚癌之風險。基於無機砷風險,本研究分別對各暴露族群之各類水產品每週最大允許攝食量提出建議,以19-64歲暴露族群為例,建議每週攝食遠洋魚類不超過10.2克、近海魚類30.4克、其他魚類161.6克、甲殼類61.7克、貝類59.3克、頭足類599.6克、及藻類83.7克。
This study was conducted according to the Sanitation Standards for Aquatic Animals and the Sanitation Standards for Algal Foods published by the Taiwan Food and Drug Administration (TFDA). We then summarized the production, import volume, and export volume statistical yearbook published by the Fisheries Agency, Council of Agriculture, Executive Yuan and divided aquatic products into seven categories: pelagic fish, inshore fish, other fish, crustaceans, shellfish, cephalopods, and algae. Based on this classification, we compiled a list of representative fresh seafood and processed seafood products. Next, according to the registry of fisheries harbors published by the Fisheries Agency, Council of Agriculture, Executive Yuan, we divided the national administrative region into four regions for aquatic product sampling: North, Central, South, and East. Non-imported aquatic products were sampled from the top three cities based on the production, import and export volume figures in the statistical yearbook. Imported aquatic and processed seafood products were sampled from the cities with the largest populations in each of the four regions. In total we collected 556 raw and cooked fresh seafood or processed seafood product samples. We analyzed the concentrations in these samples of 14 heavy metals: total arsenic (tAs), inorganic arsenic (iAs), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), indium (In), manganese (Mn), nickel (Ni), lead (Pb), strontium (Sr), thallium (Tl), and zinc (Zn). These heavy metal concentrations in cooked fresh seafood and processed seafood product samples were subjected to a food safety risk assessment. The results showed that the average Cd concentration in raw herring, whitebait, sea scallops, mussels, shell, and octopus exceeded the Sanitation Standards for Contaminants and Toxins in Food published by the TFDA. The highest Cd concentration recorded was 8.20 mg/kg in shell, which exceeded the standard that is 1 mg/kg for shellfish. In general, the non-carcinogenic risk for each exposure group associated with intake of Cd in aquatic products was higher than for all other heavy metals. Taking the 19–64-year-old exposure group as an example, the 90th percentile of non-carcinogenic risk associated with intake of Cd in aquatic products exceeded the United States Environmental Protection Agency's recommended reference dose by 3.27 times, and may cause kidney disease. We also assessed the carcinogenic risk for each exposure group associated with the intake of iAs and Pb in aquatic products, and found that the risk for the human body associated with iAs intake was higher than that associated with Pb intake. In the above example group, the 90th percentile of carcinogenic risk associated with intake of iAs in aquatic products showed that at least one person in every 100,000 may contract skin cancer as a result of long-term consumption. Finally, we provide recommendations for the maximum allowable consumption rate of aquatic products per week for each exposure group, based on the risks associated with iAs consumption. In the above example group, the recommended consumption of pelagic fish, inshore fish, other fish, crustaceans, shellfish, cephalopods, and algae would be no more than 10.2, 30.4, 161.6, 61.7, 59.3, 599.6, and 83.7 g per week, respectively.
摘要 I
Abstract II
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 5
2.1 重金屬調查 5
2.2 衛生標準 8
2.3 食品安全風險評估 8
2.4 國際間重金屬研究 10
第三章 材料與方法 13
3.1 情境假設 13
3.2 制定代表性水產品清單 13
3.3 規劃採樣策略 14
3.4 分析水產品重金屬與無機砷濃度 15
3.5 估算水產品中重金屬暴露量 16
3.5.1 臺灣民眾重金屬與無機砷攝入量 16
3.5.2 臺灣民眾重金屬與無機砷攝入量分布 17
3.6 描述危害特徵 17
3.7 評估水產品中重金屬之健康風險 20
3.7.1 非致癌風險 21
3.7.2 致癌風險 21
3.8 追蹤水產品中重金屬 22
3.8.1 制定追蹤水產品清單 22
3.8.2 規劃追蹤採樣策略 22
3.8.3 分析追蹤水產品中重金屬濃度 23
3.9 建議水產品每週最大允許攝食量 23
第四章 結果 25
4.1 水產品中重金屬濃度之敘述性統計與機率分布 25
4.2 評估攝食水產品健康風險 39
4.2.1 非致癌風險 39
4.2.2 致癌風險 43
4.3 不確定性分析 44
4.4 追蹤高風險水產品 44
4.5 各暴露族群之水產品每週最大允許攝食量 45
第五章 討論 47
5.1 比較生熟水產品中重金屬濃度 47
5.2 水產品中重金屬濃度與限量標準 49
5.3 水產品中無機砷佔總砷比例 50
5.4 比較本研究與其他研究之水產品中重金屬濃度 50
第六章 總結 55
第七章 未來研究建議 57
參考文獻 59
附錄一、水產動物可食部分中重金屬限量(以濕重計) 124
附錄二、藻類食品中重金屬限量 125
附錄三、食品中污染物質及毒素衛生標準 126
附錄四、風險分析架構圖 134
附錄五、各類別法規中水產品分類彙整表 135
附錄六、「新鮮水產品」代表性清單表 136
附錄七、「水產製品」代表性清單表 144
行政院農業委員會,2017。糧食供需年報。
行政院農業委員會漁業署,2015。中華民國臺閩地區漁業統計年報。
行政院農業委員會漁業署,2016。中華民國臺閩地區漁業統計年報。
行政院衛生福利部食品藥物管理署,2013。水產動物衛生標準。2013年8月20日,第1021350146號令發布修正。2019年1月1日,廢止。
行政院衛生福利部食品藥物管理署,2013。藻類食品衛生標準。2013年8月21日,第1021350295號令發布修正。2019年1月1日,廢止。
行政院衛生福利部食品藥物管理署,2019。食品中污染物質及毒素衛生標準。
行政院環境保護署,2017。銦-關鍵物料調查報告。
吳春吉,2006。竹科放流水中銅及砷來源追蹤分析及其對香山海域養殖區牡蠣影響之探討。
黃瀚霆,2015。食品中重金屬濃度分布與台灣民眾健康風險評估。
焦碧瑩,2017。市售藻類食品化學成分與重金屬含量之探討。
施如佳,王炯文,周宏奕,黃明坤,潘志寬,2013。101年度市售生鮮水產品重金屬含量調查分析。食品藥物研究年報。70-76。
Abernathy CO, Marcus W, Chen C, Gibb H, White P, 1989. Office of drinking water, office of research and development, U.S. EPA. Memorandum to p. cook, office of drinking water, U.S. EPA and P. Preuss, office of regulatory support and scientific management, U.S. EPA. Report on arsenic (As) work group meetings.
Ahmed MK, Baki MA, Islam MS, Kundu GK, Habibullah-Al-Mamun M, Sarkar SK, Hossain MM, 2015. Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environ Sci Pollut Res. 22:15880-15890.
Alipour H, Pourkhabbaz A, Hassanpour M, 2015. Estimation of potential health risks for some metallic elements by consumption of fish. Water Qual Expo Health. 7:179-185.
Ambrose AM, Larson PS, Borzelleca JR, Hennigar GR, 1976. Long-term toxicologic assessment of nickel in rats and dogs. J. Food Sci. Technol. 13: 181-187.
Arellano JM, Storch V, Sarasquete C, 1999. Histological changes and copper accumulation in liver and gills of the Senegales Sole, Solea senegalensis. Ecotoxicol Environ Saf. 44:62-72.
Atta MB, El-Sebaie LA, Noaman MA, Kassab HE, 1997. The effect of cooking on the content of heavy metals in fish (Tilapia nilotica). Food Chemistry. 58:1-4.
ATSDR (Agency for Toxic Substances and Disease Registry), 1992. Toxicological profile for cobalt. public health service, U.S. Department of health and human services, Atlanta, GA.
ATSDR (Agency for Toxic Substances and Disease Registry), 2004. Agency for toxic substances and disease registry, division of toxicology, Clifton Road, NE, Atlanta, GA.
ATSDR (Agency for Toxic Substances and Disease Registry), 2004. Toxicological profile for copper. Atlanta, GA: U.S. Department of health and human services, public health service.
ATSDR (Agency for Toxic Substances and Disease Registry), 2012. Toxicological profile for manganese. Atlanta, GA: U.S. Department of health and human services, Public Health Service.
Authman MM, Zaki MS, Khallaf EA, Abbas HH, 2015. Use of fish as bio-indicator of the effects of heavy metals pollution. Journal of Aquaculture Research and Development 6:1-13.
Burger J, Gaines KF, Boring CS, Snodgrass J, Stephens WL, Gochfeld M, 2004. Effects of cooking on radiocesium in fish from the Savannah River: Exposure differences for the public. Archives of environmental contamination and toxicology 46:231-235.
Bustamante P, Caurant F, Fowler SW, Miramand P, 1998. Cephalopods as a vector for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. Science of the Total Environment. 220:71-80.
Bustamante P, Cosson RP, Gallien I, Caurant F, Miramand P, 2002. Cadmium detoxification processes in the digestive gland of cephalopods in relation to accumulated cadmium concentrations. Mar. Environ. Res. 53:227–241.
CAC (Codex Alimentarius Commission), 2013. Procedural manual. Codex Committee on Food Additives and Contaminants (CCFAC) guidelines for exposure assessment of contaminants and toxins in food or food groups. 15th ed.
Carson B, Ellis H, McCann J. 1986. Toxicology and biological monitoring of metals in humans. Chelsea, MI: Lewis Publishers, Inc. 243-254.
Çelik U, Oehlenschläger J, 2007. High contents of cadmium, lead, zinc and copper in popular fishery products sold in Turkish supermarkets. Food control. 18:258-261.
Copat C, Arena G, Fiore M, Ledda C, Fallico R, Sciacca S, Ferrante M, 2013. Heavy metals concentrations in fish and shellfish from eastern Mediterranean Sea: consumption advisories. Food and Chemical Toxicology. 53:33-37.
Cui B, Zhang Q, Zhang K, Liu X, Zhang H, 2011. Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environmental Pollution. 159:1297-1306.
Cyriac PJ, Antony A, Nambisan PNK, 1989. Hemoglobin and hematocrit values in the fish Oreochromis mossambicus (Peters) after short term exposure to copper and mercury. Bull. Environ. Contam. Toxicol. 43:315-320.
Davis CD, Milne DB, Nielsen FH, 2000. Changes in dietary zinc and copper affect zinc-status indicators of postmenopausal women, notably, extracellular superoxide dismutase and amyloid precursor proteins. Am J Clin Nutr. 71:781-788.
De Flora S, Camoirano A, Bagnasco M, Bennicelli C, Corbett GE, Kerger BD, 1997. Estimates of the chromium (VI) reducing capacity in human body compartments as a mechanism for attenuating its potential toxicity and carcinogenicity. Carcinogenesis. 18:531-537.
Diaconescu C, Urdes L, Diaconescu S, Popa D, 2012. Effects of cooking methods on the heavy metal concentrations in the fish meat originating from different areas of Danube River. J. Anim. Sci. 55:265-267.
Duran A, Tuzen M, Soylak M, 2014. Assessment of trace metal concentrations in muscle tissue of certain commercially available fish species from Kayseri, Turkey. Environmental Monitoring and Assessment. 186:4619-4628.
Eisler R, 1988. Arsenic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, Report 12. Biological Report. 85(1.12). Laurel, MD.
Ersoy B, 2011. Effects of cooking methods on the heavy metal concentrations of the African Catfish (Clarias Gariepinus). Journal of Food Biochemistry. 35:351-356.
FAOSTA (Food and Agriculture Organization of the United Nations), 2014. <http://faostat.fao.org/>.
FAO/WHO (Food and Agriculture/World Health Organisation), 1972. Evaluation of certain food additives and the contaminants mercury, cadmium and lead. WHO Technical Report Series.505. Geneva: WHO.
Fischer PW, Giroux A, L'Abbe MR, 1984. Effect of zinc supplementation on copper status in adult man. Am J Clin Nutr. 40:743-746.
Freeland-Graves JH, Bales CW, Behmardi F, 1987. Manganese requirements of humans. In:Nutritional Bioavailability of Manganese, C. Kies, ed. American Chemical Society, Washington, DC. 90-104.
Frykman E, Bystrom M, Jansson U, Edberg A, Hansen T, 1994. Side effects of iron supplements in blood donors: Superior tolerance of heme iron. J Lab Clin Med. 123:561-4.
Ghani A, 2011. Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egyptian Acad J Biol Sci. 2:9-15.
Grazuleviciene R, Nadisauskiene R, Buinauskiene J, Grazulevicius T, 2009. Effects of Elevated Levels of Manganese and Iron in Drinking Water on Birth Outcomes. Polish J of Environ Stud. 18:819-825.
Howarth RS, Sprague JB, 1978. Copper lethality to rainbow trout in waters of various hardness and pH. Water Research. 12:455-462.
Ivankovic S, Preussman R, 1975. Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats. Food Cosmet Toxicol. 13:347-351.
Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN, 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology. 7:60-72.
Järup L, 2003. Hazards of heavy metal contamination. British medical bulletin. 68:167-182.
Ju YR, Chen CW, Chen CF, Chuang XY, Dong CD, 2017. Assessment of heavy metals in aquatic fishes collected from southwest coast of Taiwan and human consumption risk. International Biodeterioration and Biodegradation. 124:314-325.
Kalogeropoulos N, Karavoltsos S, Sakellari A, Avramidou S, Dassenakis M, Scoullos M, 2012. Heavy metals in raw, fried and grilled Mediterranean finfish and shellfish. Food and Chemical Toxicology. 50:3702-3708.
Leermakers M, Baeyens W, De Gieter M, Smedts B, Meert C, De Bisschop HC, Quevauviller P, 2006. Toxic arsenic compounds in environmental samples: Speciation and validation. TrAC Trends in Analytical Chemistry. 25:1-10.
Ling MP, Hsu HT, Shie RH, Wu CC, Hong YS, 2009. Health risk of consuming heavy metals in farmed tilapia in central Taiwan. Bulletin of environmental contamination and toxicology. 83:558-564.
Mendil D, Demirci Z, Tuzen M, Soylak M, 2010. Seasonal investigation of trace element contents in commercially valuable fish species from the Black sea, Turkey. Food Chem Toxicol. 48:865-870.
Milne DB, Davis CD, Nielsen FH, 2001 Low dietary zinc alters indices of copper function and status in postmenopausal women. Nutrition. 17:701-708.
Mohanty M, Kumar Patra H, 2013. Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna Radiata l. Wilczek. Var k-851) during seedling growth. JSPB. 9:232-241.
Morais S, e Costa FG, de Lourdes Pereira M, 2012. Heavy metals and human health. In Environmental health-emerging issues and practice. IntechOpen.
MRI (Midwest Research Institute), 1988. Toxicity of thallium(I) sulfate (CAS No. 7446-18-6) in Sprague-Dawley rats. Volume two: Subchronic (90-day) study. Revised final report. Project No. 8702-L(18), Work Assignment No. 111148-008. Prepared for U.S. Environmental Protection Agency, Office of Solid Waste, Washington, DC, through Dynamac Corporation, Rockville, MD. [An external peer review was conducted by EPA in November 2006 to evaluate the accuracy of experimental procedures, results, and interpretation and discussion of the findings presented. A report of this peer review is available through the EPA’s IRIS Hotline, at (202) 566-1676 (phone), (202) 566-1749 (fax), or hotline.iris@epa.gov (e-mail address) and at www.epa.gov/iris.]
Munoz-Olivas R, Camara C, 2001. Speciation related to human health. In L. Ebdon, L. Pitts, R. Cornelis, H. Crews, O. F. X. Donard, and P. Quevauviller (Eds.). NaTrace element speciation for environment, food and health. 331-353.Cambridge, UK: The Royal Society of Chemistry.
Nagano K, Nishizawa T, Eitaki Y, Ohnishi M, Noguchi T, Arito H, Fukushima S, 2011. Pulmonary toxicity in mice by 2-and 13-week inhalation exposures to indium-tin oxide and indium oxide aerosols. Journal of occupational health. 53:234-239.
NAS (National Academy of Sciences), 2001. Iron. In: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. Institute of Medicine, Food and Nutrition Board. National Academy Press, Washington, DC.233-310.
NRC (National Research Council), 1983. Risk assessment in the federal government. Managing the process. National Academy Press, Washington, DC.
NRC (National Research Council), 1989. Recommended Dietary Allowances, 10th ed. Food and Nutrition Board, National Research Council, National Academy Press, Washington, DC. 230-235.
Niyogi S, Wood CM, 2006. Interaction between dietary calcium supplementation and chronic waterborne zinc exposure in juvenile rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol C. 143:94-102.
Nordberg GF, Fowler BA, Nordberg M (Eds.), 2014. Handbook on the Toxicology of Metals. Academic press.
Olmedo P, Pla A, Hernández AF, Barbier F, Ayouni L, Gil F, 2013. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environment international. 59:63-72.
Pacheco M, Santos MA, Pereira P, Martínez JI, Alonso PJ, Soares MJ, Lopes JC, 2013. EPR detection of paramagnetic chromium in liver of fish (Anguilla anguilla) treated with dichromate (VI) and associated oxidative stress responses—Contribution to elucidation of toxicity mechanisms. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 157:132-140.
Pastorelli AA, Baldini M, Stacchini P, Baldini G, Morelli S, Sagratella E, Ciardullo S, 2012. Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: a pilot evaluation. Food Additives and Contaminants: Part A. 29:1913-1921.
Pennington JA, Young BE, Wilson DB, 1989. Nutritional elements in U.S. diets: results from the Total Diet Study, 1982 to 1986. J Am Diet Assoc. 89:659-664.
Perello G, Marti-Cid R, Llobet JM, Domingo JL, 2008. Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. Journal of agricultural and food chemistry. 56:11262-11269.
Phippen B, Horvath C, Nordin R, Nagpal N, 2008. Ambient water quality guidelines for iron: overview. Ministry of Environment Province of British Columbia.
Qin D, Jiang H, Bai S, Tang S, Mou Z, 2015. Determination of 28 trace elements in three farmed cyprinid fish species from Northeast China. Food Control, 50:1-8.
Raknuzzaman M, Ahmed MK, Islam MS, Habibullah-Al-Mamun M, Tokumura M, Sekine M, Masunaga S, 2016. Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment. Environ Sci Pollut Res Int. 23:17298-17310.
Roche, M, Layrisse M, 1956. Effect of cobalt on thyroidal uptake of I131. J. Clin. Endocrinol. Metab. 16:831-833.
Rodriguez MC, Barsanti L, Passarelli V, Evangelista V, Conforti V, Gualtieri P, 2007. Effects of chromium on photosynthetic and photoreceptive apparatus of the alga. Chlamydomonas reinhardtii. Environ Res. 105:234-239.
Ryan TP, Aust SD, 1992. The role of iron in oxygen-mediated toxicities. Crit Rev Toxicol 22:119-41.
Santos LFP, Trigueiro INS, Lemos VA, da Nóbrega Furtunato DM, Cardoso RDCV, 2013. Assessment of cadmium and lead in commercially important seafood from São Francisco do Conde, Bahia, Brazil. Food control. 33:193-199.
Storey E, 1961. Strontium "rickets": bone calcium and strontium changes. Austral. Ann. Med. 10:213-222.
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ, Luch A, 2012. Molecular, clinical and environmental toxicology. Molecular, Clinical and Environmental Toxicology. 3:133-164.
Tseng, WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S,1968. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J. Natl. Can0cer. Inst. 40:453- 463.
Tuzen M, 2009. Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food and Chemical Toxicology. 47:1785-1790.
USEPA (United States Environmental Protection Agency), 1976. Guidelines for Ecological Risk Assessment. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, DC.
USEPA (United States Environmental Protection Agency), 1976. Toxicological Review of Nickel.
USEPA (United States Environmental Protection Agency), 1984. Health assessment document for inorganic arsenic. Prepared by the office of health and environmental assessment. Environmental criteria and assessment office, Research Triangle Park, NC.
USEPA (United States Environmental Protection Agency), 1985. Drinking water criteria document on cadmium. Office of drinking water, Washington, DC. Final draft.
USEPA (United States Environmental Protection Agency), 1986. Health assessment document for Nickel.
USEPA (United States Environmental Protection Agency), 1987. Health effects assessment for cobalt. Prepared by the office of health and environmental assessment. Environmental criteria and assessment office, Cincinnati, OH for the office of solid waste and emergency response, Washington, DC. ECAO-CIN-H120.
USEPA (United States Environmental Protection Agency), 1987. Recommendations for and Documentation of Biological Values for Use in Risk Assessment. Prepared by the office of health and environmental assessment, environmental criteria and assessment office, Cincinnati, OH for the office of solid waste and emergency response, Washington, DC. EPA/600/6-87/008. NTIS PB88-179874/AS.
USEPA (United States Environmental Protection Agency), 1988. Special report on ingested inorganic arsenic; skin cancer; nutritional essentiality risk assessment forum. EPA/625/3-87/013.
USEPA (United States Environmental Protection Agency), 1992. Health and environmental effects document for stable strontium. Prepared by the office of health and environmental assessment. Environmental criteria and assessment office, Cincinnati, OH for the office of solid waste and emergency response, Washington, DC.
USEPA (United States Environmental Protection Agency), 1993. Standard methods for the examination of water and wastewater, American public health Assoc. US.
USEPA (United States Environmental Protection Agency), 1997. Health effects assessment summary tables. Annual update. FY-1997. Office of research and development. Office of emergency and remedial response, Washington, DC. EPA/540/R-97/036. NTIS PB97-921199.
USEPA (United States Environmental Protection Agency), 1998. Guidelines for Ecological Risk Assessment. U.S. Environmental Protection Agency, risk assessment forum, Washington, DC.
USEPA (United States Environmental Protection Agency), 2000. Guidelines for assessing chemical contaminant data for use in fish advisories. II. Risk assessment and fish consumption limits. EPA/823/B/00/008. USEPA, Washington, DC.
USEPA (United States Environmental Protection Agency), 2005. Guidelines for ecological risk assessment. U.S. environmental protection agency, risk assessment Forum, Washington, DC.
USEPA (United States Environmental Protection Agency), 2005 Guidelines for carcinogen risk assessment. Risk assessment forum, Washington, DC. EPA/630/P-03/001F. Available from: http://www.epa.gov/iris/backgrd.html.
USEPA (United States Environmental Protection Agency), 2006. Air Quality Criteria for lead, final report, Washington, DC, EPA/600/R-05/144aF-bF, 2006.http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=158823#Download.
USEPA (United States Environmental Protection Agency), 2006. Provisional peer-reviewed toxicity values for iron and compounds, Washington, DC, EPA/690/R-06/020F.
USEPA (United States Environmental Protection Agency), 2006. US Environmental protection agency region III risk based concentration table: technical background information.
USEPA (United States Environmental Protection Agency), 2006. Toxicological review of iron.
USEPA (United States Environmental Protection Agency), 2008. Toxicological review of Cobalt.
USEPA (United States Environmental Protection Agency), 2008. Toxicological review of trivalent chromium.
USEPA (United States Environmental Protection Agency), 2009 Toxicological review of thallium and compounds. Risk assessment forum, Washington, DC. EPA/635/R-08/001F.
USEPA (United States Environmental Protection Agency), 2011. Toxicological Review of Manganese.
USEPA (United States Environmental Protection Agency), 2012. Toxicological Review of Cadmium.
USEPA (United States Environmental Protection Agency), 2014. Toxicological Review of Inorganic Arsenic.
Varanka Z, Rojik I, Varanka I, Nemcsók J, Ábrahám M, 2001. Biochemical and morphological changes in carp (Cyprinus carpio L.) liver following exposure to copper sulfate and tannic acid. Comp Biochem Physiol C. 128:467-478.
Vuori K-M, 1995. Direct and Indirect eff ects of iron on river eco systems. Annal Zoo Fennici. 32:317-329.
Wang X, Sato T, Xing B, Tao S, 2005. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of the total environment. 350:28-37.
WHO (World Health Organization), 1973. Trace Elements in Human Nutrition: Manganese. Report of a WHO Expert Committee. Technical Report Service, 532, WHO, Geneva, Switzerland. 34-36.
WHO (World Health Organization), 1982. Food additives contaminants WHO global database on copper
WHO (World Health Organization), 2011. Food additives contaminants WHO global database on lead.
Yadrick MK, Kenney MA, Winterfeldt EA, 1989. Iron, copper, and zinc status: response to supplementation with zinc or zinc and iron in adult females. Am J Clin Nutr. 49:145-150.
Zhu FK, Qu L, Fan WX,Wang AR, Hao HL, Li XB, Yao SW, 2015. Study on heavy metal levels and its health risk assessment in some edible fishes from Nansi Lake, China. Environmental Monitoring and Assessment. 187:161-173.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top