(3.227.208.0) 您好!臺灣時間:2021/04/21 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何止喬
研究生(外文):He,Chih-Chiao
論文名稱:紅藻細翼枝菜上的真菌群落多樣性
論文名稱(外文):Total and active community of fungi associated with the red alga Pterocladiella capillacea
指導教授:彭家禮彭家禮引用關係
指導教授(外文):Pang, Ka-Lai
口試委員:謝松源林綉美
口試委員(外文):Hsieh, Sung-YuanLin, Showe-Mei
口試日期:2019-01-16
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:84
中文關鍵詞:紅藻海洋真菌真菌群落多樣性培養法高通量定序
外文關鍵詞:Red algaMarine fungiDiversityCulture-dependent techniqueNext-generation sequencing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
關於生長在藻類上的真菌研究缺乏,特別是海洋大型藻類,而前人只針對小部份褐藻、綠藻和紅藻進行初部研究。因此本研究選取臺灣北部的優勢紅藻細翼枝菜 (Pterocladiella capillacea) 作為研究對象,以培養法分離真菌及非培養法 (metabarcoding) 結果比較細翼枝菜上的真菌多樣性。於培養法中,將洗淨的健康及死亡藻體置於葡萄糖-酵母萃取物-蛋白腖瓊脂海水培養基 (GYPS) 及人工海水瓊脂培養基 (SWA) 上,待菌絲從藻體生長出來後便繼代於玉米粉瓊脂培養基 (CMAS) 上,依其菌落形態分群。利用聚合酶連鎖反應 (polymerase chain reaction, PCR) 擴增其核醣體基因 (rDNA) 內轉錄間隔區 (internal transcribed spacer, ITS) 及核醣體大亞基 (large subunit, LSU) 並進行測序,最後與NCBI的GenBank資料庫序列進行比較以鑑種。於高通量定序中,從冷凍乾燥後的細翼枝菜藻體萃取總DNA和RNA。先將RNA反轉錄成cDNA後,並使用巢式PCR擴增DNA及cDNA的ITS1區域 (230−422 bp),所得到的擴增產物利用Illumina Miseq進行測序。結果顯示基於相對豐富度 (每個物種數量佔全部數量的百分比) 的計算,從培養法中只獲得子囊菌門 (88.75%) 和擔子菌門 (11.25%)。於高通量定序中,rDNA樣品大部份序列屬於未被分類之真菌群 (75.04%),擔子菌門 (16.23%) 和子囊菌門 (8.72%) 為優勢群。擔子菌門 (52.31%) 在rRNA樣品中為優勢群,其次是子囊菌門 (40.56%),有少量的壺菌門序列 (0.004%),而未被分類之真菌群佔總序列的7.13%。基於相對豐富度的計算,優勢真菌於分離法中為Hypoxylon monticulosum (11.25%)、Byssochlamys spectabilis (7.5%) 和Emericella sp. (7.5%);於rDNA樣品中為Mycosphaerella sp. (2.49%)、Malassezia globosa (1.73%) 和 Auricularia polytricha (1.23%);於rRNA樣品中為Nigrospora sphaerica (12.52%)、Peniophora sp.1 (9.23%) 和Auricularia polytricha (8.09%)。香農-維納多樣性指數 (H’) 的結果顯示rRNA樣品具有最高的多樣性 (3.644),其次為可培養的真菌 (3.414) 和最低為rDNA 樣品 (2.077)。這些結果皆表明紅藻細翼枝菜上有高真菌之多樣性,利用培養技術及分子技術所獲得的藻類真菌多樣性並不一致,且擔子菌可能與紅藻有共生關係。
Information on the diversity of fungi associated with macroalgae is lacking. Previous studies only focused on fungi of selected species of brown, green and red algae. This study, therefore, investigates the diversity of fungi associated with Pterocladiella capillacea, a dominant red alga in northern Taiwan, using a culture-dependent technique and a metabarcoding approach. For isolation, mycelia growing out from washed healthy and dead thalli on GYPS (glucose-yeast extract-peptone seawater agar) and SWA (seawater agar) media were subcutlured onto CMAS (cornmeal seawater agar) medium and grouped into colony morphotypes. ITS (internal transcribed spacers of the rDNA) and LSU (large subunit of the rDNA) of the fungi were sequenced and compared with reference sequences in NCBI for identification. For high-throughput sequencing, total RNA and DNA were extracted from freeze-dried Pterocladiella capillacea thalli. RNA was reverse-transcribed into cDNA, and together with the extracted total DNA, a region of the ITS1 (230−422 bp) of DNA and cDNA using a nested PCR approach was amplified for Illumina Miseq sequencing. For relative abundance (no. of a particular species / no. of total species  100 %), Ascomycota (88.75%) and Basidiomycota (11.25%) were the only phyla obtained from the isolation approach. For the metabarcoding analyses, unidentified fungi (75.04%) were dominant in the rDNA sequences, followed by Basidiomycota (16.23%) and Ascomycota (8.72%). Basidiomycota (52.31%) was dominant in the rRNA samples, followed by Ascomycota (40.56%) and Chytridiomycota (0.004%) while unidentified fungi constituted 7.13% of the total sequences. The dominant fungi from isolation based on relative abundance were Hypoxylon monticulosum (11.25%), Byssochlamys spectabilis (7.50%) and Emericella sp. (7.50%); Mycosphaerella sp. (2.49%), Malassezia globosa (1.73%) and Auricularia polytricha (1.23%) in the rDNA samples; Nigrospora sphaerica (12.52%), Peniophora sp.1 (9.23%) and Auricularia polytricha (8.09%) in the rRNA samples. Shannon’s diversity index (H’) suggests that the rRNA samples had the highest diversity (3.644), followed by the culturable collection of fungi (3.414) and the rDNA samples (2.077). These results collectively suggest that different methods uncovered different fungal diversity on the alga, and the Basidiomycota might play a symbiotic role with the red alga.
謝辭 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
一、 前言 1
1. 海洋真菌 1
2. 海藻和紅藻細翼枝菜 1
3. 藻類上的海洋真菌 2
4. 培養法-菌種分離 3
5. 非培養法-總體基因體學 (Metagenomics / Metabarcoding) 4
6. 研究動機及目的 4
二、 材料與方法 7
1. 樣品採集 7
2. 培養法-菌株分離 9
2.1 藻體表面清洗 9
2.2 菌株分離及純化 9
2.3 菌株保種-繼代保存 11
2.4 菌株保種-低溫冷凍保存 11
2.5 形態鑑定 12
2.6 分子鑑定 14
2.6.1 菌株DNA萃取 14
2.6.2 聚合酶連鎖反應 ( Polymerase Chain Reaction, PCR) 14
2.6.3 凝膠電泳和定序鑑種 15
3. 以高通量定序分析樣品 16
3.1 冷凍乾燥樣品 16
3.2 紅藻RNA及DNA萃取 16
3.3 巢式PCR (Nested PCR) 17
3.3.1 First PCR 17
3.3.2 Second PCR 19
3.3.3 凝膠電泳 20
3.3.4 從瓊脂糖膠片中回收純化DNA片段 21
3.4 高通量定序 22
4. 數據分析 23
4.1 相對豐富度 (Relative Abundance, RA) 23
4.2 多樣性指數 23
4.3 繪製稀釋性曲線 (Rarefaction Curve) 26
4.4 繪製熱圖 (Heatmap) 26
三、 研究結果 27
1. 培養法-菌株鑑定結果 27
2. 高通量定序樣品測序結果 29
2.1 稀釋曲線分析 29
2.2 OTU水平分析 30
2.3 紅藻rDNA樣品之序列比對結果 30
2.4 紅藻rRNA樣品之序列比對結果 31
2.5 熱圖分析 33
3. 樣品群落組成分析 34
3.1 真菌門分類水平的比較 34
3.2 真菌綱分類水平的比較 36
3.3 真菌目分類水平的比較 38
3.4 真菌科分類水平的比較 40
3.5 真菌屬分類水平的比較 42
3.6 真菌種分類水平的樣品分佈Venn圖 43
3.7 相對豐富度較高的真菌 44
4. 多樣性分析 45
四、 討論 47
1. 樣品群落組成分析討論 47
2. 多樣性分析討論 48
五、結論 49
參考文獻 50
附錄 57
附錄表1:本研究分離菌株與NCBI GenBank資料庫比對結果 57
附錄表2:高通量定序與NCBI GenBank資料庫比對結果 63
附錄表3:不同樣品的OTU 編號及其對應序列數量 79
Abdel-Gawad, K. M., Hifney, A. F., Issa, A. A., & Gomaa, M. (2014). Spatio-temporal, environmental factors, and host identity shape culturable-epibiotic fungi of seaweeds in the Red Sea, Egypt. Hydrobiologia, 740(1), 37-49.
Amann, R., & Ludwig, W. (2000). Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiology Reviews, 24(5), 555-565.
Buermans, H. P. J., & Den Dunnen, J. T. (2014). Next generation sequencing technology: advances and applications. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(10), 1932-1941.
Chen, K., & Pachter, L. (2005). Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS computational biology, 1(2), e24.
Cowan, D., Meyer, Q., Stafford, W., Muyanga, S., Cameron, R., & Wittwer, P. (2005). Metagenomic gene discovery: past, present and future. TRENDS in Biotechnology, 23(6), 321-329.
Dai, J., Krohn, K., Flörke, U., Pescitelli, G., Kerti, G., Papp, T., Kövér, K. E., Bényei, A. C., Draeger, S., Schulz, B., & Kurtán, T. (2010). Curvularin‐type metabolites from the fungus Curvularia sp. isolated from a marine alga. European Journal of Organic Chemistry, 2010(36), 6928-6937.
Fenical, W. (1993). Chemical studies of marine bacteria: developing a new resource. Chemical Reviews, 93(5), 1673-1683.
Flewelling, A. J., Ellsworth, K. T., Sanford, J., Forward, E., Johnson, J. A., & Gray, C. A. (2013a). Macroalgal Endophytes from the Atlantic Coast of Canada: A Potential Source of Antibiotic Natural Products?. Microorganisms, 1(1), 175-187.
Flewelling, A. J., Johnson, J. A., & Gray, C. A. (2013b). Isolation and bioassay screening of fungal endophytes from North Atlantic marine macroalgae. Botanica Marina, 56(3), 287-297.
Godinho, V. M., Furbino, L. E., Santiago, I. F., Pellizzari, F. M., Yokoya, N. S., Pupo, D., Alves, T. M., Junior, P. A. S., Romanha, A. J., Zani, C. L., Cantrell, C. L., Rosa, C.A., & Rosa, L. H. (2013b). Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. The ISME journal, 7(7), 1434-1451.
Guiry, M. D. (2012). The seaweed site: information on marine algae. From http://www.seaweed.ie/
Haegeman, B., Hamelin, J., Moriarty, J., Neal, P., Dushoff, J., & Weitz, J. S. (2013). Robust estimation of microbial diversity in theory and in practice. The ISME journal, 7(6), 1092.
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & biology, 5(10), R245-R249.
Hebert, P. D., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic biology, 54(5), 852-859.
Hebert, P. D., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321.
Hwang, J. L. (2005). Impacts of temperature, nutrient and typhoon on temporal variations of macroalgal assemblage and Pterocladiella capillacea biomass in northeastern Taiwan.
Hyde, K. D., Farrant, C. A., & Jones, E. B. G. (1987). Isolation and culture of marine fungi. Botanica Marina, 30(4), 291-304.
Iwamoto, C., Yamada, T., Ito, Y., Minoura, K., & Numata, A. (2001). Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron, 57(15), 2997-3004.
Jensen, P. R., Jenkins, K. M., Porter, D., & Fenical, W. (1998). Evidence that a New Antibiotic Flavone Glycoside Chemically Defends the Sea Grass Thalassia testudinumagainst Zoosporic Fungi. Applied and Environmental Microbiology, 64(4), 1490-1496.
Johnson, T. W., & Sparrow, F. K. (1961). Fungi in oceans and estuaries. Fungi in oceans and estuaries.
Jones, E. G. (2011a). Are there more marine fungi to be described?. Botanica Marina, 54(4), 343-354.
Jones, E. G. (2011b). Fifty years of marine mycology. Fungal Diversity, 50(1), 73.
Jones, E. G., & Mitchell, J. I. (1996). Biodiversity of marine fungi. In Biodiversity : International Biodiversity Seminar. (ed. A. Cimerman & N. Gunde-Cimerman), pp. 31–42. National Institute Chemistry and Slovenia National Commission for UNESCO : Ljubljana.
Jones, E. G., Pang, K. L., & Stanley, S. J. (2012). 17 Fungi from marine algae. Marine Fungi: and Fungal-like Organisms, 329.
Jones, E. G., Suetrong, S., Sakayaroj, J., Bahkali, A. H., Abdel-Wahab, M. A., Boekhout, T., & Pang, K. L. (2015). Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Diversity, 73(1), 1-72.
Kaeberlein, T., Lewis, K., & Epstein, S. S. (2002). Isolating" uncultivable" microorganisms in pure culture in a simulated natural environment. Science, 296(5570), 1127-1129.
Kohlmeyer, J., & Kohlmeyer, E. (1979). Marine mycology: the higher fungi. Acadmic Press, New York.
Kohlmeyer, J., & Volkmann-Kohlmeyer, B. (1991). Illustrated key to the filamentous higher marine fungi. Botanica Marina, 34(1), 1-61.
Kohlmeyer, J., & Volkmann-Kohlmeyer, B. (2003). Marine ascomycetes from algae and animal hosts. Botanica Marina, 46(3), 285-306.
Kolde, R. (2012). Pheatmap: pretty heatmaps. R package version, 61.
König, G. M., Kehraus, S., Seibert, S. F., Abdel‐Lateff, A., & Müller, D. (2006). Natural products from marine organisms and their associated microbes. ChemBioChem, 7(2), 229-238.
Kralj, A., Kehraus, S., Krick, A., Eguereva, E., Kelter, G., Maurer, M., Wortmann, A., Fiebig, H., & König, G. M. (2006). Arugosins G and H: Prenylated Polyketides from the Marine-Derived Fungus Emericella n idulans var. a cristata. Journal of natural products, 69(7), 995-1000.
Kubanek, J., Jensen, P. R., Keifer, P. A., Sullards, M. C., Collins, D. O., & Fenical, W. (2003). Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proceedings of the National Academy of Sciences, 100(12), 6916-6921.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 33(7), 1870-1874.
Lam, C., Stang, A., & Harder, T. (2008). Planktonic bacteria and fungi are selectively eliminated by exposure to marine macroalgae in close proximity. FEMS microbiology ecology, 63(3), 283-291.
Loque, C. P., Medeiros, A. O., Pellizzari, F. M., Oliveira, E. C., Rosa, C. A., & Rosa, L. H. (2010). Fungal community associated with marine macroalgae from Antarctica. Polar Biology, 33(5), 641-648.
Malmstrøm, J., Christophersen, C., & Frisvad, J. C. (2000). Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry, 54(3), 301-309.
Mann, K. H. (1973). Seaweeds: their productivity and strategy for growth. Science, 182(4116), 975-981.
Margalef, R. (1958). Information theory in biology. General Systems Yearbook, 3, 36-71.
Martin, K. J., & Rygiewicz, P. T. (2005). Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC microbiology, 5(1), 28.
Meyers, S. P., & Reynolds, E. S. (1959). Effects of wood and wood products on perithecial development by lignicolous marine Ascomycetes. Mycologia, 51(2), 138-145.
Mohamed, D. J., & Martiny, J. B. (2011). Patterns of fungal diversity and composition along a salinity gradient. The ISME journal, 5(3), 379.
Mueller, G. M. (2011). Biodiversity of fungi: inventory and monitoring methods. Elsevier.
Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic acids research, 8(19), 4321-4326.
Nambiar, G. R., Raveendran, K., Changxing, Z., & Jaleel, C. A. (2008). A glimpse of lignicolous marine fungi occurring in coastal water bodies of Tamil Nadu (India). Comptes rendus biologies, 331(6), 475-480.
Nylund, G. M., Persson, F., Lindegarth, M., Cervin, G., Hermansson, M., & Pavia, H. (2009). The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence. FEMS microbiology ecology, 71(1), 84-93.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., Friendly, M., McGlinn, D., Simpson, G. L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., & Oksanen, M. J. (2013). Package ‘vegan’. Community ecology package, version, 2(9).
Pang, K. L., Overy, D. P., Jones, E. G., da Luz Calado, M., Burgaud, G., Walker, A. K., Johnson, J. A., Kerr, R. G., Cha, H., & Bills, G. F. (2016). ‘Marine fungi’and ‘marine-derived fungi’in natural product chemistry research: Toward a new consensual definition. Fungal Biology Reviews, 30(4), 163-175.cj
Park, M. S., Lee, S., Oh, S. Y., Cho, G. Y., & Lim, Y. W. (2016). Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. Journal of Microbiology, 54(10), 646-654.
Pawlowski, J., Audic, S., Adl, S., Bass, D., Belbahri, L., Berney, C., Bowser, S. S., Cepicka, I., Decelle, J., Dunthorn, M., Fiore-Donno, A. M., Gile, G.H., Holzmann, M., Jahn, R., Jirků, M., Keeling, P. J., Kostka, M., Kudryavtsev, A., Lara, E., Lukeš, J., Mann, D. G., Mitchell, E. A. D., Nitsche, F., Romeralo, M., Saunders, G. W., Simpson, A. G. B., Smirnov, A. V., Spouge, J. L., Stern, R. F., Stoeck, T., Zimmermann, J., Schindel, D., & Vargas, C. D. (2012). CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS biology, 10(11), e1001419.
Pielou, E. C. (1966). Species-diversity and pattern-diversity in the study of ecological succession. Journal of theoretical biology, 10(2), 370-383.
Pinto, A. J., & Raskin, L. (2012). PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PloS one, 7(8), e43093.
Porter, D., & Farnham, W. F. (1986). Mycaureola dilseae, a marine basidiomycete parasite of the red alga, Dilsea carnosa. Transactions of the British Mycological Society, 87(4), 575-582.
Rao, C. R. (1981). Gini-Simpson index of diversity: A characterization, generalization and applications. University of Pittsburgh.
Rayner, A. D. (1998). Fountains of the forest–the interconnectedness between trees and fungi. Mycological Research, 102(12), 1441-1449.
Saleem, M., Ali, M. S., Hussain, S., Jabbar, A., Ashraf, M., & Lee, Y. S. (2007). Marine natural products of fungal origin. Natural product reports, 24(5), 1142-1152.
Sanders, W. B., Moe, R. L., & Ascaso, C. (2004). The intertidal marine lichen formed by the pyrenomycete fungus Verrucaria tavaresiae (Ascomycotina) and the brown alga Petroderma maculiforme (Phaeophyceae): thallus organization and symbiont interaction. American journal of botany, 91(4), 511-522.
Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PloS one, 6(12), e27310.
Schocha, C. L., Seifertb, K. A., Huhndorfc, S., Robertd, V., Spougea, J. L., Levesqueb, C. A., Chenb, W., & Fungal Barcoding Consortiuma (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246.
Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
Solis, M. J. L., Draeger, S., & dela Cruz, T. E. E. (2010). Marine-derived fungi from Kappaphycus alvarezii and K. striatum as potential causative agents of ice-ice disease in farmed seaweeds. Botanica Marina, 53(6), 587-594.
Stanley, S. J. (1992). Observations on the seasonal occurrence of marine endophytic and parasitic fungi. Canadian journal of botany, 70(10), 2089-2096.
Suryanarayanan, T. S. (2012). Fungal endosymbionts of seaweeds. In Biology of marine fungi (pp. 53-69). Springer, Berlin, Heidelberg.
Suryanarayanan, T. S., Venkatachalam, A., Thirunavukkarasu, N., Ravishankar, J. P., Doble, M., & Geetha, V. (2010). Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Botanica Marina, 53(5), 457-468.
Sutherland, G. K. (1915). New marine fungi on Pelvetia. New Phytologist, 14(2‐3), 33-42.
Sutherland, G. K. (1916). Marine fungi imperfecti. New Phytologist, 15(1‐2), 35-48.
Swann, E.C. and J.W. Taylor. 1993. Higher taxa of basidiomycetes: an 18S rRNA gene perspective. Mycologia 85: 923-936.
Team, R. C. (2000). R language definition. Vienna, Austria: R foundation for statistical computing.
Thompson, I. P., Bailey, M. J., Fenlon, J. S., Fermor, T. R., Lilley, A. K., Lynch, J. M., ... & Whipps, J. M. (1993). Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant and Soil, 150(2), 177-191.
Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PloS one, 7(7), e40863.
Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of bacteriology, 172(8), 4238-4246.
White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. L. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322.
Zengler, K., & Palsson, B. O. (2012). A road map for the development of community systems (CoSy) biology. Nature Reviews Microbiology, 10(5), 366.
Zhang, J., Ding, Q., & Huang, J. (2013). spaa: Species association analysis. R package version 0.2, 1.
Zuccaro, A., & Mitchell, J. I. (2005). Fungal communities of seaweeds. In The Fungal Community: Its Organization and Role in the Ecosystem, Third Edition (pp. 533-579). CRC Press.
Zuccaro, A., Schoch, C. L., Spatafora, J. W., Kohlmeyer, J., Draeger, S., & Mitchell, J. I. (2008). Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Applied and environmental microbiology, 74(4), 931-941.
王利娟與賀新生 (2006)。植物內生真菌分離培養的研究方法。微生物學雜誌,26(4),55-60。
江永棉、王瑋龍與黄淑芳 (1990)。臺灣海藻簡介。臺灣省立博物館。
李長林 (2013)。青島潮間帶藻生與渤海沉積物真菌多樣性研究(碩士論文)。中國海洋大學,中國青島市。
李國忠與陳建霖 (1994)。生態歧異度與林分結構之研究。中華林學季刊,27(3),59-89。
李越鯤、孫燕飛、雷勇輝、周旋、尹躍與秦墾 (2017)。枸杞根際土壤真菌群落多樣性的高通量測序。微生物學報,57(7),1049-1059。
邢來君與李明春 (1999)。普通真菌學。高等教育出版社。270-274。
武俊男、劉昱辛、周雪、王天野、高強、高雲航與劉淑霞 (2018)。基於Illumina MiSeq測序平臺分析長期不同施肥處理對黑土真菌群落的影響。微生物學報,58(9),1658-1671。
孫開明 (2011)。黃海山東沿岸潮間帶藻生與沉積物真菌物種多樣性初步研究(碩士論文)。中國海洋大學,中國青島市。
孫翠麗、張閣、程汝佳、朱良全、丁家波與常維山 (2017)。16S rRNA 高通量測序方法檢測羊圈空氣微生物群落結構及多樣性。畜牧獸醫學報,48(7),1314-1322。
游婉婷與林亞立 (2012)。應用核糖體DNA片段鑑別木棲性大型真菌。宜蘭大學生物資源學刊,8(1),45-58。
黃淑芳 (2000)。臺灣東北角海藻圖錄。國立臺灣博物館。
黃雅惠與許瑞祥 (2004)。利用核糖體核糖核酸基因序列進行巴西蘑菇親緣關係之探討。台灣農業化學與食品科學,42(2),75-82。
楊娟、郝志成與張亞平 (2016)。基於 MiSeq 測序分析新疆泥火山土壤細菌群落多樣性。微生物學通報,43(12),2609-2618。
劉水準與羅志勇 (2005)。分子生物學實驗中使用液氮研磨組織的方法。實驗教學與儀器,22(3),29-29。
蔡尚與馮豐隆 (1999)。生態歧異度及其求算方法之分類。中國生物,42(1),65-83。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔