跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴家農
研究生(外文):Lai, Chia-Nung
論文名稱:散裝航運船舶能源效率之分析
論文名稱(外文):An Analysis of Ship Energy Efficiency of Bulk Shipping
指導教授:鍾政棋鍾政棋引用關係蘇育玲蘇育玲引用關係
口試委員:林成蔚黃昱凱李選士
口試日期:2019-06-12
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:航運管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:散裝船舶船舶能源效率重要度績效分析法模糊理論品質機能展開法
外文關鍵詞:Bulk carrierShip energy efficiencyImportance-Performance AnalysisFuzzy theoryQuality Function Deployment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:0
2020年起全球海運燃油含硫量0.5%的限制將嚴重影響國際燃油供需市場,就目前煉油產業與航運產業因應的發展態勢研判,未來海運燃油供應市場短期內仍然充滿了不確定性,然而可從中預見的是,額外的燃料成本勢必對散裝航運業造成衝擊。
本研究考量散裝航運特有的市場環境與經營模式,針對船舶營運過程船舶能源效率作為研究對象,透過文獻回顧與專家訪談建構九項船舶能源效率改善指標之品質需求構面,並整合船舶營運相關部門資料研擬三十項當前普遍運用之節能改善技術加以評估。研究過程中應用重要度績效分析法,協助公司經營決策者檢視散裝航運船舶能源效率指標現況和採用最佳資源配置;並結合模糊品質機能展開法,針對各項船舶能源效率改善技術進行優先排序,為決策者提供全面性的經營管理策略,以改善營運船舶之能源效率,希冀藉此能夠減少燃料成本變動對散裝航運所帶來的衝擊。
經過分析調查,本研究主要發現如下:
1. 船舶以論時傭船期間,應著重於「降低船舶阻力」和「船舶設備可靠性」兩項指標之維護,以避免無法達到與傭船人約定之油耗與船速而遭到求償或藉故解約,造成公司獲利損失。
2. 散裝船舶由於主機燃油消耗量占比會隨著船型而增加,因此大型船舶之能源效率改善,應著重於維護與主機油耗相關度較高之指標,如「降低船舶阻力」、「船舶推進效率」、「航行時間的優化」等,必可事半功倍。
3. 船舶管理者對於透過仲介公司管束與派遣之外籍船員素質普遍感到憂心,「人員能力與素質」指標之改善,儼然已經成為了多數船公司的一項重要課題。
關鍵詞:散裝船舶、船舶能源效率、重要度績效分析法、模糊理論、品質機能展開法
The international bunker supply and demand market will be seriously influenced by the 2020 sulphur cap. In light of current development trends taking place within the refining and shipping industry, the marine bunker supply market will be rife with uncertainties in the near future. However, it’s foreseeable that additional fuel costs will inevitably have an impact on the bulk shipping industry.
This study aims to effectively improve ship energy efficiency in the process of ship operation, with a view to the specific business model and market environment of bulk shipping. The Quality Requirement Dimension, consisting of nine demand indexes, was constructed through literature reviews and expert interviews. A total of 30 widely-used relevant energy-saving service technologies, developed through relevant departments of ship operation, were integrated and evaluated. Importance-Performance Analysis (IPA) was applied in the research process to assist decision-makers in examining resource allocation for energy efficiency indicators of bulk carriers. Also the method of Fuzzy Quality Function Deployment (FQFD) was used to prioritize various ship energy efficiency improvement technologies, so as to provide decision-makers with comprehensive business strategies to improve ship energy efficiency, hoping to reduce the impact of fuel cost changes on bulk shipping.
After analysis and investigation, the main findings of this study are as follows,
1. During the time charter period, emphasis shall be placed on the maintenance of “Reduction of Ship Resistance” and “Reliability of Ship and Equipment”, so as to avoid claims or termination of the contract due to failure to meet the agreed fuel consumption and ship speed with the charterer, which may result in profit loss of the company.
2. Since the proportion of main engine fuel consumption increases with the size of the ship, the improvement of energy efficiency of large ships should focus on the maintenance of indicators related to main engine fuel consumption, such as “Reduction of Ship Resistance”, “Improvement of Propulsive Efficiency”, “Voyage Optimization” and so on, which can get twice the result with half the effort.
3. Ship managers are generally concerned about the quality of foreign crew dispatched through manning companies. The improvement of “Personnel Ability and Quality” has become an important subject for most shipping companies.
Key words: Bulk carrier, Ship energy efficiency, Importance-Performance Analysis, Fuzzy theory, Quality Function Deployment
謝誌……………………………………………………………………………...….…..I
摘要…………………………………………………………………….…………..…..Ⅱ
Abstract……………………………………………………………….………….….....III
目次……………………………………………………………………………...….....IV
圖目次…………………………………………………………………...………...…..VI
表目次…………………………………………………………………………………IX

第一章 緒論
1.1 研究背景與動機………………………………………………….…………….1
1.2 研究問題與目的……………………………………………………….……….1
1.3 研究內容與方法……………………………………………………………….2
1.4 研究架構與流程……………………………………………………………….3

第二章 文獻回顧與評析
2.1 散裝航運市場…………………………………………………………….……6
2.1.1 散裝航運市場沿革……………………………………………….….…6
2.1.2 散裝航運收入…………………………………………………….….…7
2.1.3 散裝航運成本………………………………………………………..…8
2.1.4 航次損益估算……………………………………………………….…10
2.1.5 散裝航運產業所面臨的問題…………………………….…….…. … 11
2.2 國際船舶空氣汙染防制公約….………………………………………..……14
2.2.1 硫化物排放限制………………………………………………………15
2.2.1.1 燃用低硫燃油……………………………………….……..…16
2.2.1.2 安裝脫硫裝置……………………………………………...…19
2.2.1.3 燃用液化天然氣…………………………………..……….…19
2.2.1.4 硫化物排放限制對航運產業的影響……………………...…20
2.2.2 碳排放限制……………………………………………………………20
2.2.2.1 新造船能源效率設計指數………………………………...…20
2.2.2.2 船舶能源效率管理計畫與能源效率營運指數…………...…21
2.2.2.3 船舶能源效率管理的現行作法…………………………...…22
2.2.2.4 能源效率營運指數的不確定性…………………………...…23
2.3 船舶特性與節能技術………….…………………………………….….……23
2.3.1 最佳航線的規劃…………………………………………………....…24
2.3.2 航行速率與主機輸出功率………………………………………....…25
2.3.3 船舶阻力…………………………………………………………....…26
2.3.4 船舶常數…………………………………………………………....…26
2.3.5 低阻力油漆與船殼塗裝品質……………………………………....…27
2.3.6 最小安全吃水與船舶俯仰差……………………………………....…27
2.3.7 船舶推進效率……………………………………………………....…27
2.3.8 船用引擎性能專家診斷系統…………………………………........…29
2.3.9 加熱蒸汽的損耗…………………………………………………....…30
2.4 綜合評析……………………….…………………………………….….……32

第三章 研究方法
3.1 重要性績效分析法………………………………………………….…..……34
3.2 品質機能展開法…………………………………………………….…..……35
3.3 模糊理論………………………………………………….……………..……36
3.2.1 模糊集合………………….………………………………………...…37
3.2.2 三角模糊數……………….………………………………………...…37
3.4 模糊品質機能展開法…………….………………………………………...…38

第四章 實證分析與討論
4.1 散裝船舶能源效率需求構面……………………………………………...…40
4.2 問卷發放與樣本統計……………………………………………………...…41
4.3 重要度績效分佈情形……………………………………………………...…42
4.3.1 依傭船模式分群後分析結果………….…………………………...…45
4.3.2 依船型大小分群後分析結果….…………………………………...…48
4.4 標準化權重………………………………………………………………...…53
4.5 服務品質技術構面………………………………………………………...…54
4.6 模糊品質機能展開結果…………………………………………………...…55
4.7 綜合討論…………………………………………………………………...…57

第五章 結論與建議
5.1 結論………………………………………………………………………...…60
5.2 建議………………………………………………………………………...…60

參考文獻………………………………………………………………………………61

附件 散裝航運船舶能源效率問卷調查表……………………………………..……65
1. 彭斌(2005),「船舶節能技術綜述」,艦船科學技術,第27卷增刊。
2. 方信雄(2004),散裝航運經營關鍵成功因素與經營績效之研究以我國散裝國輪公司為例,國立臺灣海洋大學航運管理研究所碩士論文。
3. 李鷺光、王紅岩、劉合、李群、張磊夫(2018),「天然氣助力未來世界發展─第27屆世界天然氣大會(WGC)綜述」,天然氣工業,第38卷第9期,頁1-9。
4. 李國定(2011),「船舶常數測定精度的研究」,大連海事大學學報,第2期,頁9-20。
5. 劉伊凡、孫培廷、張躍文、張鵬(2016),「船舶能效營運指數預測的建模及仿真分析」,哈爾濱工程大學學報,第37卷第8期,頁1015-1021。
6. 黃雪忠、梁志強、楊威(2017),「船舶常數的產生及修正措施的研究」,江蘇船舶,第3期,頁38-40。
7. 中國船級社(2014),船舶能量消耗分布與節能指南,北京。
8. 中技社節能技術發展中心(2000),蒸汽鍋爐高效率作業技術手冊。
9. 鍾政棋、林成蔚、高國軒(2008),「散裝超輕便極限型船市場與BSI指數之預測」,航運季刊,第17卷第1期,頁1-24。
10. 鍾政棋(2004),我國散裝航運公司船舶設籍與營運績效之分析,國立交通大學交通運輸研究所博士論文。
11. 鍾政棋(2012),圖解航業經營概論,複合文具印刷有限公司,臺北市。
12. 鍾政棋和黃承傳(2003),「散裝船傭船鏈經營型態之分析」,運輸學刊,第15卷第1期,頁99-113。
13. 張家澤(2007),「亞洲LNG交易價格與美國天然氣市場的影響」,石油市場雙週報,專題分析報導。
14. 張曦、李大屹(2018),「船舶二氧化碳排放量計算的不確定性分析」,艦船科學技術,第40卷第11期,頁52-54。
15. 陳永順、王旭堂(2004),「國際乾散貨航運市場報酬時變動差實證研究」,航運季刊,第13卷第1期,頁1-17。
16. 日本國土交通省海事局(2019),2020年SOx規制適合舶用燃料油使用手引書。
17. 財團法人中國驗船中心(2014),中國驗船中心電子報,第133期。
18. 孫台豐(2013),船舶柴油主機極低速航行省油效益之研究,國立臺灣海洋大學商船學系碩士論文。
19. 嚴新平、李志雄、劉正林、楊平、朱漢華、楊忠民(2013),「大型船舶推進系統與船體耦合動力學研究綜述」,船舶力學,第17卷第4期,頁439-449。
20. 吳偉國(2012),船舶低摩擦阻力塗料省油效益之研究,國立臺灣海洋大學商船學系碩士論文。
21. Acomi, N. and Acomi, O.C. (2014), “Improving the Voyage Energy Efficiency by Using EEOI,” Procedia-Social and Behavioral Sciences, Vol. 138, pp. 531-536.
22. Bendall, H. and Stent, A.F. (2003), “Investment Strategies in Market Uncertainty,” International Maritime Transport, pp. 14-23.
23. Bialystocki, N. and Konovessis D. (2016), “On the Estimation of Ship’s Fuel Consumption and Speed Curve: A Statistical Approach,” Journal of Ocean Engineering and Science, pp. 157-166.
24. Buhaug, Ø., Corbett, J.J., Endresen, Ø., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lee, D., Lindstad, H., Markowska, A.Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J.J., Wu, W., and Yoshida, K. (2009), “Prevention of Air Pollution from Ships,” Second IMO GHG Study 2009, International Maritime Organization, London.
25. Clarksons Platou (2018), Market Report Shipping and Offshore 2018, Norway.
26. Class ABS (2013), Ship Energy Efficiency Measures Advisory, Houston.
27. Cullinane, K. (1995), “A Portfolio Analysis of Market Investments in Dry Bulk Shipping,” Transportation Research Part B Methodological, Vol. 29, Iss. 3, pp. 181-200.
28. Dube, L., Johnson, M.D. and Renaghan, L.M. (2009), “Adapting the QFD Approach to Extended Service Transactions,” Production and Operations Management, Vol. 8, Iss. 3, pp. 301-307.
29. Hochkirch, K. and Bertram, V. (2010), “Options for Fuel Saving for Ships,” Mare Forum 2010: Maritime Transportation of Energy, Houston.
30. IMO (2019), “Reduction of GHG emissions from ships - Energy efficiency improvement measure for existing ships,” MEPC 74th session, Agenda item 7, submitted by Japan.
31. IMO (2009), “Guidelines for voluntary use of the ship energy efficiency operational indicator (EEOI),” MEPC.1/Circ.684.
32. IMO (2011), “Amendments to MARPOL Annex VI on regulations for the prevention of air pollution from ships by inclusion of new regulations on energy efficiency for ships,” RESOLUTION MEPC.203(62).
33. IMO (2012), “2012 Guidelines on survey and certification of the Energy Efficiency Design Index (EEDI),” RESOLUTION MEPC.214(63).
34. IMO (2016), “2016 Guidelines for the development of a Ship Energy Efficiency Plan (SEEMP),” MEPC 70/18/Add.1.
35. Kitada, M. (2015), “Managing People and Technology: The Challenges in CSR and Energy Efficient Shipping,” Research in Transportation Business and Management, Vol. 17, pp. 36-40.
36. Lu, R.H., Turan, O., Boulougouris, E., Banks, C., Incecik, A. (2015), “A Semi-empirical Ship Operational Performance Prediction Model for Voyage Optimization towards Energy Efficient Shipping,” Ocean Engineering, 110, pp. 18-28.
37. MAN Diesel and Turbo (2015), L28/32DF Project Guide – Marine, Four-stroke GenSet compliant with IMO Tier II.
38. MAN Diesel and Turbo (2011), Basic Principles of Ship Propulsion, Denmark.
39. MAN Diesel and Turbo (2013), MAN B&W G70ME-C9-TII - Project Guide, 1st Edition.
40. Martilla, J.A. and James, J.C. (1997), “Importance-Performance Analysis,” Journal of Marketing, Vol. 41, pp. 77-79.
41. Molland, A.F., Turnock, S.R. and Hudson, D.A. (2011), Ship Resistance and Propulsion, Cambridge University Press, United States of America.
42. Noordin, M.F. (2015), “Green Computing: The Importance of Sustaining the Peopleware,” International Journal of Green Computing, Vol. 6, Iss.1, pp. 33-39.
43. OECD (2018), “Shipbuilding Market Developments Q2 2018,” Organization for Economic Co-operation and Development, France.
44. Radan, D. (2008), “Integrated Control of Marine Electrical Power Systems,” Thesis for the degree of Philosophiae Doctor, Norwegian University of Science and Technology.
45. Rehmatulla, N., Calleya, J. and Smith, T. (2017), “The Implementation of Technical Energy Efficiency and CO2 Emission Reduction Measures in Shipping,” Ocean Engineering, Vol. 139, pp. 184-197.
46. Stopford, M. (2009), Maritime Economics, 3rd Ed., Routledge, London.
47. Sullivan, L.P. (1986), “Quality function deployment,” Quality Progress, Vol. 19, Iss. 6, pp. 39-50.
48. Swagelok Energy Advisors, Inc. (2011), Steam system thermal cycle efficiency-Part One.
49. Taleb, N.N. (2007), The Black Swan: The Impact of the Highly Improbable, Random House Inc., New York.
50. Tzeng G.H. and Teng J.Y. (1993), “Transportation Investment Project Selection with Fuzzy Multiobjectives,” Transportation Planning and Technology, Vol. 17, pp. 91-112.
51. U.S. Department of Energy (2005), Steam Pressure Reduction: Opportunities and Issues, Washington DC.
52. Vanegas, L.V. and Labib, A.W. (2010), “A Fuzzy Quality Function Deployment (FQFD) model for deriving optimum targets ,“ International Journal of Production Research, Vol. 39, Iss. 1, pp. 99-120.
53. Veenstra, A.W. and Ludema, M.W. (2006), “The Relationship between Design and Economic Performance of Ships,” Maritime Policy and Management, Vol. 33, Iss. 2, pp. 159-171.
54. Veritas Petroleum Services Group (2018), Bunker Alert 35/2018.
55. WTO (2018), World Trade Statistical Review 2018, World Trade Organization, Switzerland.
56. Woud, H.K. and Stapersma, D. (2003), Design of Propulsion and Electric Power Generation Systems, IMarEST Publication, London.
57. Yang, C.C. (2003), “Establishment and Applications of The Integrated Model of Service Quality Measurement,” Managing Service Quality, 13(4), pp. 310-324.
58. Zhao, F.Y., Yang, W.M., Tan, W.W., Chou, S.K. and Yu, W.B. (2015), “An Overall Ship Propulsion Model for Fuel Efficiency Study,” The 7th International Conference on Applied Energy, Energy Procedia, 75, pp. 813-818.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊