跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/05 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石道全
研究生(外文):Shih, Tao-Chuan
論文名稱:基於投票機制之虹彩病毒科與野田病毒科的宿主專一性抗原表位預測
論文名稱(外文):A voting mechanism-based linear epitope prediction system for the host-specific Iridoviridae and Nodaviridae family
指導教授:白敦文
指導教授(外文):Pai, Tun-Wen
口試委員:周信佑張大慈
口試委員(外文):Chou, Hsin-YiuChang, Dah-Tsyr
口試日期:2019-07-04
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:37
中文關鍵詞:虹彩病毒神經壞死病毒宿主專一性投票機制線性抗原表位
外文關鍵詞:IridovirdaeNodaviridaeHost-specificVoting-mechanismLinear epitope
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
虹彩病毒與神經壞死病毒是養殖漁蝦所面臨養殖物種死亡的最大威脅,即使目前有許多種抑制病毒的疫苗產品,然而由於仍缺乏對這兩種病毒及感染機制的完全理解,這些免疫方式並不是特別有效。虹彩病毒分為兩類:第一類Alphairidovirinae只能感染脊椎生物,包含Lymphocystivirus、Ranavirus (GIV)和Megalocystivirus (TGIV);第二類Betairidovirinae主要感染無脊椎生物,包含Iridovirus和Chloriridovirus。神經壞死病毒依照感染宿主專一性可以分為三大類: 第一類Alphanodvirus主要感染昆蟲及植物;第二類Betanodavirus只能感染魚類;第三類是近年新定義的Gammanodavirus類別只能感染蝦類。我們認為這種宿主專一性特徵能提供預測線性抗原表位的重要依據。本論文提出一套基於投票機制的預測系統,結合五套知名的線性抗原表位預測工具,依預測及投票結果進行具有”保留”及”獨特”性的線性抗原表位分類,依宿主專一特徵所預測的線性抗原表位可以有效提升疫苗開發的效能及效率。經由預設參數所辨識的線性抗原表位片段,進一步透過預測3D結構的比對方式判斷該線性抗原表位是否座落於該病原結構的表面區域,經確認座落於表面區域的線性抗原可以提升後續生物實驗驗證的成功率。本論文使用ELISA生物實驗方式驗證系統預測的線性抗原表位的抗原反應特性,經實驗結果證明本系統所預測的線性抗原表位的確與石斑魚抗體有明顯的結合反應。除了直接使用生物實驗驗證方式,我們另外使用IEDB資料庫所收錄已經由實驗驗證的線性抗原表位資料,透過訓練機制建構一套智慧分類器模型,進一步強化辨識先前投票機制所預測的抗原表位是否被成功分類為具有線性抗原表位的重要特徵,可以協助生物學家或免疫學專家決定是否進行生物實驗驗證的選擇。實驗證明此系統能夠精確且有效的預測線性抗原、針對宿主專一性的病原分群方式能提供有效的線性抗原表位預測並為疫苗開發帶來實質助益。
關鍵字:虹彩病毒、神經壞死病毒、宿主專一性、投票機制、線性抗原表位
For agriculture environments, Iridoviridae and Nodaviridae probably are the leading cause of death for farming fishery. To date, many vaccines have developed. However, the efficacies of these vaccines are relatively low. The Iridoviridae is consist of two subfamilies: Alphairidovirinae includes Lymphocystivirus, Ranavirus (GIV), and Megalocystivirus (TGIV), which infects vertebrate hosts and Betairidovirinae includes Iridovirus and Chloriridovirus, which infects invertebrate hosts. Nodaviridae also possesses similar property and is categorized into three subfamilies: Alphanodvirus includes all insect nodaviurses, Betanodavirus infects fishery species, and Gammanodavirus infects prawns. Both virus families possess host-specific characteristics, which can be considers as exclusive features for identifying effective linear epitopes (LEs). In this thesis, we provide a voting-based model that ensembles the predicting results from 5 existing LE prediction servers. According to different clustered pathogen groups, both conserved and exclusive LEs could be identified simultaneously. The advantages of undocumented cross-infection between vertebrate and invertebrate host species of the Iridoviridae and Nodaviridae families were applied to reevaluate the impact of LE prediction. Furthermore, surface structural characteristics of identified conserved and exclusive LE candidates were confirmed through predicted 3D structural alignment analysis. To validate the predicted LEs, ELISA assays were performed to identify host-specific LEs, and the experimental results showed that predicted LEs were reflected in high antigenicity responses for specific grouper species. In addition to perform biological experiments, we have trained an intelligent classifier based on IEDB experimentally verified linear epitope segments. Biologists and immunologists can use this classifier to in silico validate whether the previously predicted LEs are suitable for performing biological experiments. The thesis demonstrates that the proposed system provides an effective approach for in silico LE prediction prior to vaccine development, and it is especially powerful for analyzing antigen sequences with exclusive features among clustered groups.

Keywords: Iridoviridae, Nodaviridae, host-specific, voting mechanism, linear epitope
摘要 I
Abstract III
Contents V
List of Figures VII
List of Tables IX
List of Abbreviations XI
1. Introduction 1
2 Materials and methods 5
2.1 Data collection 5
2.2 System flowchart 7
2.3 Biological experiment 9
3. Results 11
3.1 LE prediction 11
3.1.1 The LEs for Iridoviridae 11
3.2 The LEs for Nodaviridae 16
3.2.1 Alphanodavirus and Betanodavirus 16
3.2.2 Betanodavirus and Gammanodavirus 17
3.2.3 Alphanodavirus and Gammanodavirus 19
3.2.4 Betanodavirus grouper-infecting species only 20
4. Conclusion and discussion 22
5. Reference 25
6. Supplementary materials 29
1. Chinchar V, Hyatt A, Miyazaki T, Williams T: Family Iridoviridae: poor viral relations no longer. In: Lesser Known Large dsDNA Viruses. Springer; 2009: 123-170.
2. Nadugala MN, Jeewandara C, Malavige GN, Premaratne PH, Goonasekara CL: Natural antibody responses to the capsid protein in sera of Dengue infected patients from Sri Lanka. PLoS One 2017, 12(6):e0178009.
3. Murali S, Wu MF, Guo IC, Chen SC, Yang HW, Chang CY: Molecular characterization and pathogenicity of a grouper iridovirus (GIV) isolated from yellow grouper, Epinephelus awoara (Temminck & Schlegel). Journal of Fish Diseases 2002, 25(2):91-100.
4. Do JW, Cha SJ, Kim JS, An EJ, Park MS, Kim JW, Kim YC, Park MA, Park JW: Sequence variation in the gene encoding the major capsid protein of Korean fish iridoviruses. Arch Virol 2005, 150(2):351-359.
5. Chinchar V, Hyatt A: Iridoviruses: general features. 2008.
6. Piégu B, Asgari S, Bideshi D, Federici BA, Bigot Y: Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales. Molecular phylogenetics and evolution 2015, 84:44-52.
7. Lin H-Y, Liou C-J, Cheng Y-H, Hsu H-C, Yiu J-C, Chiou PP, Lai Y-S: Development and application of a monoclonal antibody against grouper iridovirus (GIV) major capsid protein. Journal of virological methods 2014, 205:31-37.
8. Liu C-C, Chen C-M, Pai T-W, Chou H-Y, Hsu H-H: Exclusive genomic pathway analysis for groupers infected by different iridovirus. In: Complex, Intelligent, and Software Intensive Systems (CISIS), 2015 Ninth International Conference on: 2015. IEEE: 508-512.
9. Souto S, Olveira J, Dopazo C, Bandín I: Reassortant betanodavirus infection in turbot (Scophthalmus maximus). Journal of fish diseases 2016, 39(11):1347-1356.
10. Costa JZ, Thompson KD: Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. Fish & shellfish immunology 2016, 53:35-49.
11. Yong CY, Yeap SK, Omar AR, Tan WS: Advances in the study of nodavirus. PeerJ 2017, 5:e3841.
12. Gye HJ, Park M-J, Kim W-S, Oh M-J, Nishizawa T: Heat-denaturation of conformational structures on nervous necrosis virus for generating neutralization antibodies. Aquaculture 2018, 484:65-70.
13. Gye HJ, Oh M-J, Nishizawa T: Lack of nervous necrosis virus (NNV) neutralizing antibodies in convalescent sevenband grouper Hyporthodus septemfasciatus after NNV infection. Vaccine 2018, 36(14):1863-1870.
14. Vendramin N, Toffan A, Mancin M, Cappellozza E, Panzarin V, Bovo G, Cattoli G, Capua I, Terregino C: Comparative pathogenicity study of ten different betanodavirus strains in experimentally infected European sea bass, Dicentrarchus labrax (L.). Journal of fish diseases 2014, 37(4):371-383.
15. Schneemann A, Marshall D: Specific encapsidation of nodavirus RNAs is mediated through the C terminus of capsid precursor protein alpha. Journal of virology 1998, 72(11):8738-8746.
16. Chen N-C, Yoshimura M, Guan H-H, Wang T-Y, Misumi Y, Lin C-C, Chuankhayan P, Nakagawa A, Chan SI, Tsukihara T: Crystal structures of a piscine betanodavirus: mechanisms of capsid assembly and viral infection. PLoS pathogens 2015, 11(10):e1005203.
17. Coeurdacier J-L, Laporte F, Pepin J-F: Preliminary approach to find synthetic peptides from nodavirus capsid potentially protective against sea bass viral encephalopathy and retinopathy. Fish & shellfish immunology 2003, 14(5):435-447.
18. Costa J, Adams A, Bron J, Thompson K, Starkey W, Richards R: Identification of B‐cell epitopes on the betanodavirus capsid protein. Journal of fish diseases 2007, 30(7):419-426.
19. Chen C-W, Wu M-S, Huang Y-J, Cheng C-A, Chang C-Y: Recognition of linear B-cell epitope of betanodavirus coat protein by RG-M18 neutralizing mAB inhibits giant grouper nervous necrosis virus (GGNNV) infection. PloS one 2015, 10(5):e0126121.
20. Nishizawa T, Takano R, Muroga K: Mapping a neutralizing epitope on the coat protein of striped jack nervous necrosis virus. Journal of general virology 1999, 80(11):3023-3027.
21. Zolla-Pazner S, Cardozo T: Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol 2010, 10(7):527-535.
22. EL‐Manzalawy Y, Dobbs D, Honavar V: Predicting linear B‐cell epitopes using string kernels. Journal of molecular recognition 2008, 21(4):243-255.
23. Forsström B, Axnäs BB, Rockberg J, Danielsson H, Bohlin A, Uhlen M: Dissecting antibodies with regards to linear and conformational epitopes. PloS one 2015, 10(3):e0121673.
24. Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S: An overview of bioinformatics tools for epitope prediction: implications on vaccine development. Journal of biomedical informatics 2015, 53:405-414.
25. Greenbaum JA, Andersen PH, Blythe M, Bui HH, Cachau RE, Crowe J, Davies M, Kolaskar AS, Lund O, Morrison S et al: Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 2007, 20(2):75-82.
26. Singh H, Ansari HR, Raghava GP: Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PloS one 2013, 8(5):e62216.
27. Jespersen MC, Peters B, Nielsen M, Marcatili P: BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research 2017, 45(W1):W24-W29.
28. Saha S, Raghava G: Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics 2006, 65(1):40-48.
29. Wang H-W, Lin Y-C, Pai T-W, Chang H-T: Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification. BioMed Research International 2011, 2011.
30. Pruitt KD, Tatusova T, Brown GR, Maglott DR: NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2012, 40(Database issue):D130-135.
31. UniProt C: UniProt: a hub for protein information. Nucleic Acids Res 2015, 43(Database issue):D204-212.
32. Zhang Q, Liu Q, Liu S, Yang H, Liu S, Zhu L, Yang B, Jin J, Ding L, Wang X: A new nodavirus is associated with covert mortality disease of shrimp. Journal of General Virology 2014, 95(12):2700-2709.
33. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ: The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015, 10(6):845-858.
34. Zhang Y: I-TASSER server for protein 3D structure prediction. BMC bioinformatics 2008, 9(1):40.
35. Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000, 302(1):205-217.
36. Yao B, Zhang L, Liang S, Zhang C: SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PloS one 2012, 7(9):e45152.
37. Chen J, Liu H, Yang J, Chou K-C: Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino acids 2007, 33(3):423-428.
38. Stormo GD, Schneider TD, Gold L, Ehrenfeucht A: Use of the ‘Perceptron’algorithm to distinguish translational initiation sites in E. coli. Nucleic acids research 1982, 10(9):2997-3011.
39. Saha S, Raghava G: BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. In: International Conference on Artificial Immune Systems: 2004. Springer: 197-204.
40. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A: Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Springer; 2005: 571-607.
41. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. Journal of molecular biology 1982, 157(1):105-132.
42. Vihinen M, Torkkila E, Riikonen P: Accuracy of protein flexibility predictions. Proteins: Structure, Function, and Bioinformatics 1994, 19(2):141-149.
43. Emini EA, Hughes JV, Perlow D, Boger J: Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of virology 1985, 55(3):836-839.
44. Lin SY-H, Cheng C-W, Su EC-Y: Prediction of B-cell epitopes using evolutionary information and propensity scales. In: BMC bioinformatics: 2013. BioMed Central: S10.
45. Rubinstein ND, Mayrose I, Martz E, Pupko T: Epitopia: a web-server for predicting B-cell epitopes. BMC bioinformatics 2009, 10(1):287.
46. Kringelum JV, Nielsen M, Padkjær SB, Lund O: Structural analysis of B-cell epitopes in antibody: protein complexes. Molecular immunology 2013, 53(1-2):24-34.
47. Chen N-C, Yoshimura M, Miyazaki N, Guan H-H, Chuankhayan P, Lin C-C, Chen S-K, Lin P-J, Huang Y-C, Iwasaki K: The atomic structures of shrimp nodaviruses reveal new dimeric spike structures and particle polymorphism. Communications biology 2019, 2(1):72.
48. Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T: Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein engineering 2001, 14(8):529-532.
49. Shamriz S, Ofoghi H, Moazami N: Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Computers in biology and medicine 2016, 76:24-29.
50. Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ: Design and characterization of structured protein linkers with differing flexibilities. Protein Engineering, Design & Selection 2014, 27(10):325-330.
51. Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols 2010, 5(4):725.
52. Hou J, Liu Y, Hsi J, Wang H, Tao R, Shao Y: Cholera toxin B subunit acts as a potent systemic adjuvant for HIV-1 DNA vaccination intramuscularly in mice. Human vaccines & immunotherapeutics 2014, 10(5):1274-1283.
53. Wang C, Zhu W, Wang B-Z: Dual-linker gold nanoparticles as adjuvanting carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro. International journal of nanomedicine 2017, 12:4747.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊