(3.235.41.241) 您好!臺灣時間:2021/04/15 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黎君邁
研究生(外文):Li, Chun-Mai
論文名稱:具休眠電路之寬負載適應性導通時間控制降壓轉換器
論文名稱(外文):Design of a Wide-Load Adaptive On-Time Buck Converter with Sleep Circuit
指導教授:葉美玲葉美玲引用關係
指導教授(外文):Mei-Ling, Yeh
口試委員:林嘉洤黃淑絹葉美玲
口試委員(外文):Jia-Chuan, LinMei-Ling, Yeh
口試日期:2019-01-18
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:降壓轉換器適應性導通時間控制休眠電路
外文關鍵詞:Buck converteradaptive on-time controlsleep circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  由於穿戴式電子產品的興起,因此需要良好的電源管理裝置來維持電池的續航能力,其中控制系統會因為產品的運作情形來切換運作模式,若使用傳統電壓或是電流模式的脈衝寬度調變控制方式需要龐大的補償電容元件,會使暫態響應的速度較慢,並且其輕載時由於切換損失因此轉換效率相對低下。而適應性導通時間控制方式,不僅可以提供快速的暫態響應,並且使用少量的元件即可達到寬負載範圍(10mA~500mA)的需求。
  本論文設計一具休眠電路之寬負載適應性導通時間控制降壓轉換器,當降壓轉換器在重載時使用頻率補償電路進行補償,使轉換器的切換頻率得以固定,而在輕載時轉換器則操作在脈衝頻率調變下,並且同時關閉重載時所需的電路,以達到轉換效率最大化的目的。適應性導通時間控制主要是根據輸入電壓相關的訊號調變導通時間,以降低切換頻率受輸入電壓的影響。本文使用TSMC 0.35μm Mixed-Signal 2P4M Polycide 5V製程實現,輸入電壓範圍在3.3V ~ 4.2V,輸出電壓為1.8V,操作頻率在1.3MHz,負載電流範圍為10mA ~ 500mA,最大轉換效率為94.27%,暫態響應時間於負載電流範圍10mA變化至500mA以及從500mA變化至10mA,分別為8.57 μs與11.66 μs。

關鍵詞:降壓轉換器,適應性導通時間控制,休眠電路。
  As the technology of wearable electronic products become popular, it needs better power management devices to maintain the battery life. The control system will change the operation mode according to the usage of the products. However, the traditional voltage-mode pulse width modulation (PWM) control and current-mode PWM control converters require the large off-chip compensation capacitors, which cause slower transient response. Furthermore, the PWM control has low conversion efficiency in light loads due to the switching loss. The adaptive on-time (AOT) control not only possesses the fast transient response, but also can achieve the wide load range (10mA~500mA) with smaller component count.
  In this thesis, we achieve an adaptive on-time buck converter with sleep circuit. The frequency compensation circuit is used in heavy loads for fixing the switching frequency. The converter operates in pulse frequency modulation (PFM) in light loads, and the sleep circuit closes the circuits which are only used in heavy loads to achieve the purpose of maximizing conversion efficiency. The AOT controller adjusts the on- time according to the input voltage. It can reduce the switching frequency variation which is caused by the input voltage. This converter chip has been implemented using TSMC 0.35um Mixed-Signal 2P4M Polycide 5V process. The input voltage ranges from 3.3 to 4.2 V and the output voltage is 1.8 V. The switching frequency is about 1.3MHz. The maximum conversion efficiency is 94.27%. The load current range can be 10mA ~ 500mA. The load transient response time when the load current changes from 10mA to 500mA and from 500mA to 10mA is about 8.57 μs and 11.66 μs, respectively.

Keywords: Buck converter, adaptive on-time control, sleep circuit
摘要 Ⅰ
Abstract Ⅱ
目錄 III
圖目錄 V
表目錄 Ⅷ
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 2
第二章 直流轉直流轉換器概論 4
2.1 線性穩壓器基礎架構 4
2.2 切換式穩壓器基礎架構 5
2.2.1 降壓型切換穩壓器 5
2.2.1.1 同步與非同步降壓型切換穩壓器 8
2.2.2.1 連續導通模式分析 9
2.2.2.2 非連續導通模式分析 11
2.2.2 升壓型切換穩壓器 13
2.2.3 升降壓型切換穩壓器 15
2.3 切換式穩壓器一般規格定義 18
2.3.1 暫態響應 18
2.3.2 負載穩壓調節率 19
2.3.3 線性穩壓調節率 20
2.3.4 輸出電壓漣波 20
2.3.5 轉換效率 21
第三章 漣波控制切換式穩壓器系統設計 23
3.1 切換式穩壓器基本控制模式 23
3.1.1 脈波寬度調變控制 23
3.1.2 脈波頻率調變控制 25
3.2 漣波控制簡介 27
3.2.1 固定導通時間控制 28
3.2.2 適應性導通時間控制 30
3.2.3 固定截止時間控制 31
3.3 系統架構 32
第四章 子電路設計與模擬 35
4.1 誤差放大器 35
4.2 能隙參考電壓電路 39
4.3 遲滯比較器電路 42
4.4 電流感測電路 44
4.5 偏壓電路 46
4.6 適應性導通時間產生器 49
4.7 頻率補償電路 51
4.8 休眠電路 53
4.9 最小截止時間控制電路 54
4.10 非同步導通電路 56
4.11 零電流偵測電路 58
第五章 穩壓器模擬結果與晶片佈局 60
5.1 設計流程 60
5.2 晶片佈局圖與佈局考量 61
5.3 輸出漣波電壓 62
5.4 線性穩壓調節率 65
5.5 負載穩壓調節率 66
5.6 暫態響應 68
5.7 切換頻率受輸入電壓影響 68
5.8 切換頻率受負載電流影響 70
5.9 效能總結 72
5.10 預計規格列表 73
5.11 文獻比較表 74
第六章 結論 76
6.1 結論 76
6.2 未來展望 76
參考文獻 78
[1] Texas Instruments, “TPS82740x 360nA IQ MicroSIPTM step down converter module for low power applications,” TPS82740x datasheet, Jun. 2014 [Revised Jun. 2014].
[2] M. Siu, P. K. T. Mok, K. N. Leung, Y. H. Lam, and W. H. Ki, “A voltage-mode PWM buck regulator with end-point prediction,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 4, pp. 294-298, Apr. 2006.
[3] C. F. Lee and Philip K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[4] Hung-Chih Lin, Bou-Ching Fung, and Tsin-Yuan Chang, “A current mode adaptive on-time control scheme for fast transient DC-DC converters,” in Proc. of IEEE Symp. Circuits and Systems, Washington, 2008, pp. 2602-2605.
[5] U. Sengupta, “PWM and PFM operation of DC/DC converters for portable applications,” in 2006 TI Portable Power Design Seminar, Topics 7, TI Literature No. SLPT015.
[6] M. Day, “Understanding low drop out LDO regulators,” Texas Instruments, Dallas, May 2002. [Online]. Available: http://www.ti.com/download/trng/docs/seminar/Topic%209%20-%20Understanding%20LDO%20dropout.pdf
[7] 梁適安, 交換式電源供給器之理論與實務設計, 全華圖書股份有限公司, 1994.
[8] Ke-Horng Chen, Power Management Techniques for Integrated Circuit Design. New York: Wiley, 2016.
[9] Redl, R., and Sun, J., “Ripple-based control of switching regulators—an overview,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[10] L. K. Wong and T. K. Man, “Adaptive on-time converters,” IEEE Ind. Electron. Mag., vol. 4, no. 3, pp. 28–35, Sep. 2010.
[11] David A. Johns, Analog integrated circuit design. New York: Wiley, 1997.
[12] Ka Nang Leung and P.K.T. Mok, “A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, no.1, pp.526-530,Apr. 2002.
[13] John Wiley and Sons, Introduction to CMOS OP-AMPs and comparators, New York: Wiley, 1999.
[14] U. Sengupta, “PWM and PFM operation of DC/DC converters for portable applications,” in 2006 TI Portable Power Design Seminar, Topics 7, TI Literature No. SLPT015.
[15] B. Razavi, Design of analog CMOS integrated circuits. Boston, MA:McGraw-Hill, 2001.
[16] Chien-Hung Tsai, Shih-Mei Lin, and Chun-Sheng Huang, “A fast-transient quasi-V2 switching buck regulator using AOT control with a load current correction (LCC) technique,” IEEE Transactions on Power Electronics, vol. 28, no. 8, pp. 3949-3957, Aug. 2013.
[17] Ling-feng Shi and Ling-yan Xu, “Frequency compensation circuit for adaptive on-time control buck regulator,” IET Power Electronics, vol. 7, no. 7, pp. 1805-1809, July. 2014.
[18] Chung Hwan Son and Sangjin Byun, “A 82.5% power efficiency at 1.2 mW buck converter with sleep control,” Journal Of Semiconductor Technology And Science, vol. 16, no. 6, pp. 842-846, Dec. 2016.
[19] Changsik Yoo, “A CMOS buffer without short-circuit power consumption,” IEEE Transactions on Circuits and Systems II, vol. 47, pp. 935-937, Sept. 2000.
[20] Shih-Chi Chen, “Design of a dual-mode single-inductor dual-output buck converter,” Master thesis, National Taiwan Ocean University, 2014.
[21] 廖裕平, 陸瑞強, 類比積體電路佈局, 全華圖書股份有限公司, 2014.
[22] F. Su, W. H. Ki, and C. Y. Tsui, “Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815–822, Apr. 2008.
[23] C. H. Tso and J. C. Wu, “A ripple control buck regulator with fixed output frequency,” IEEE Power Electron. Lett., vol. 1, no. 3, pp. 61–63, Sep. 2003.
[24] Hung-Chih Lin, Bou-Ching Fung, and Tsin-Yuan Chang, “A current mode adaptive on-time control scheme for fast transient DC-DC converters,” in Proc. IEEE Int. Symp. Circuits Syst., 2008, pp. 2602–2605.
[25] X. Jing, P. K. T. Mok, and M. C. Lee, “Current-slope-controlled adaptive on-time DC-DC converter with fixed frequency and fast transient response,” in Proc. IEEE Int. Symp. Circuits Syst., 2011, pp. 1908–1911.
[26] J.-M. Liu, P.-Y. Wang, and T.-H. Kuo, “A current-mode DC–DC buck converter with efficiency-optimized frequency control and reconfigurable compensation,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 869–880, Feb. 2012.
[27] Jingrui Wu, Jinxue Xu, and Xiaoling Huang, “An indirect prediction method of remaining life based on glowworm swarm optimization and extreme learning machine for lithium battery,”in Proc. of Control Conference (CCC) 2017 36th Chinese, Dalian, China, 2017, pp. 127-130.
[28] K. Cheng, Fred C. Lee, and P. Mattavelli, "Adaptive ripple-based constant on-time control with internal ramp compensations for buck converters," in Proc. IEEE APEC, 2014, pp. 440-446.
[29] Y. J. Chen, Dan Chen, Y. C. Lin, C. J. Chen, and C. H. Wang, “A novel constant on-time current-mode control scheme to achieve adaptive voltage positioning for DC power converters,” in Proc. IEEE IECON’12 Conf., 2012, pp. 104-109.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔