跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝淞壬
研究生(外文):Xie, Song-Ting
論文名稱:大型風場併入電力系統之暫態穩定度分析
論文名稱(外文):Transient Stability Analysis of Power Systems with Large Scale Wind Fields
指導教授:陸臺根陸臺根引用關係柯佾寬
指導教授(外文):Lu, Tai-KenKe, Yi-Kuan
口試委員:陳昭榮古碧源謝易錚陸臺根柯佾寬
口試委員(外文):Chen, Chao-RongKu, Bih-YuanHsieh, Yi-ZengLu, Tai-KenKe, Yi-Kuan
口試日期:2019-06-26
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:111
中文關鍵詞:再生能源全功率換流器轉子角度暫態穩定度臨界清除時間
外文關鍵詞:Renewable EnergyFull Power ConverterRotor AngleTransient StabilityCritical Clearance Time
相關次數:
  • 被引用被引用:3
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
臺灣電力能源的供給隨著環保意識的抬頭及國外核電廠曾發生因地震海嘯所引起之安全性考量,因此國內致力於再生能源的發展,藉由國家能源政策之推動下,再生能源占比將預計於2025年提升至20%,因此,再生能源已然成為將來台灣電力發展的主流。本論文研究探討因應再生能源加入電網中,分析新加入電網之大量風機風力發電併入電網中觀察並分析大量風機的併入對整體系統的暫態穩定度影響。
本論文所使用的風機模型為全功率換流器發電機(Full-Scale Frequency Converter Generator),透過模擬能得出此種風機擁有兩種特性,其一特性為,此種類風機是透過換流器連結至電網,因此不用考慮其同步問題,故併入此種風機的電力系統轉子角度會與電壓、頻率變化率以及實功率產生偏差,且隨併入風機數量的增加其偏差會更加明顯。其二特性為,透過上述兩項特性加以研究,將系統細分成不同併入量,並且考慮電力系統中之匯流排進行故障及觀察,得出當其併入點週遭匯流排發生三相短路故障時其整體匯流排臨界清除時間會得到上升,且其臨界清除時間也會隨併入風機數量越多,其臨界清除時間也會上升。不過當故障匯流排遠離併入點時其臨界清除時間會下降,且其臨界清除時間也會隨併入數量越多,其臨界清除時間也會下降,而本論文透過暫態穩定度分析中找出其併入量與臨界清除時間的關係使其透過本論文分析中貢獻出加入再生能源併入電網中之臨界清除時間對既有之電網之臨界清除時間所具有之影響關係,可做為因應再生能源加入電網之暫態穩定度之成效結果。
For Taiwan energy supply, renewable power development is connected to country energy strategy due to environmental protection awareness and the real case of nuclear power plant troubles in earthquake and tsunami disaster. Taiwan energy proposal identifies that renewable power will rise to 20% of total power percentages in 2025, so renewable power will be one of important energy in Taiwan grid. The thesis studies of renewable power to connect to the power grid with several wind power generators for transient stability.
For this paper about study objects of wind power machines are Full-Scale Frequency Converter Generators. In the analysis of the wind power generator, this type of wind power generator has two characteristics. One is using the converter to link with grid, so the synchronous is not the priority concern point. The injection of wind power machines will have the deviation based on the rotor angle of voltage, frequency and real power. The other is to concern about Critical Clearance Time that system divides into scenarios with different capacity to inject to the grid. Meanwhile, it should concern about Busbar faulty situations and monitor faulty area to find out the criteria for Critical Clearance Time that Critical Clearance Time will rise when system suffers from Busbar fault in three phases shorts. For Critical Clearance Time, it is affected by accumulated wind power machines. The more wind turbines joining system do, the more Critical Clearance Time grid will get. When Busbar fault is far away wind power injection point, Critical Clearance Time will decline in case of several wind power machines injection. For this paper study, it defines the relation between Critical Clearance Time and transient stability by wind power injection as the grid outcome reference in renewable power connection.
摘要 I
Abstract II
目次 III
圖目次 V
表目次 IX
第一章 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 2
1.3 研究方法與工具 4
1.4 章節內容 5
第二章 暫態穩定度分析理論與方法 6
2.1 電力系統穩定度之分類與定義 6
2.2 電力系統之暫態穩定分析 8
2.3 等面積法則 13
第三章 風力發電機介紹 17
3.1 再生能源簡介 17
3.2 風力發電機介紹 17
3.2.1 鼠籠式感應發電機介紹 19
3.2.2 繞線式感應發電機介紹 20
3.2.3 雙饋式感應發電機介紹 21
3.2.4 全功率換流器發電機介紹 22
3.2.5全功率換流器發電機動態模型 24
第四章 案例分析 26
4.1 研究系統架構 26
4.2 情境案例一:比較系統有無入風機之暫態分析 36
4.2.1 尖載有無風機臨界清除間比較 36
4.2.1.1尖載無風機之情境分析 36
Case1.北部接近預計併入風機匯流排週遭:#1500 37
Case2.北部遠離預計併入風機匯流排週遭:#1600 41
Case3.中部接近預計併入風機匯流排週遭:#2200 45
Case4.中部遠離預計併入風機匯流排週遭:#530 49
Case5.南部接近預計併入風機匯流排週遭:#1000 53
Case6.南部遠離預計併入風機匯流排週遭:#2930 57
4.2.1.2尖載有風機之情境分析 61
Case1.北部接近併入風機匯流排週遭:#1500 62
Case2.北部遠離併入風機匯流排週遭:#1600 67
Case3.中部接近併入風機匯流排週遭:#2200 72
Case4.中部遠離併入風機匯流排週遭:#350 77
Case5.南部接近併入風機匯流排週遭:#1000 82
Case6.南部遠離併入風機匯流排週遭:#2930 87
4.2.2 輕載有無風機臨界清除間比較 94
4.2.2.1輕載有無風機情境分析 94
4.2.3 尖、輕載有無風機臨界清除間分析 95
4.3 情境案例二:比較風機併入量對系統之暫態分析 96
4.3.1 風機併入量設置與臨界清除時間 96
Case1. 併接量為0時系統故障匯流排之臨界清除時間 97
Case2. 併接量為300時系統故障匯流排之臨界清除時間 98
Case3. 併接量為605時系統故障匯流排之臨界清除時間 99
Case4. 併接量為1000時系統故障匯流排之臨界清除時間 100
Case5. 併接量為1303時系統故障匯流排之臨界清除時間 101
Case6. 併接量為1601時系統故障匯流排之臨界清除時間 102
Case7. 併接量為2257時系統故障匯流排之臨界清除時間 103
第五章 結論 108
5.1 總結 108
5.1 未來研究方向 108
[1] REN21, Renewables 2017 global Status Report, 2017
[2] 立法院,能源政策專案報告,第九屆第五會期,頁17-24,2016年。
[3] B. Qinyu, Y. Lin, M. Jiayi, L. Tianqi, Z. Xiaotian, W. Youyin, “Analysis of Influence with Connected Wind Farm Power Changing and Improvement Strategies on Grid Voltage Stability,” in Proc. of 2018 China International Conference on Electricity Distribution (CICED), Tianjin, pp. 2029-2033, 2018.
[4] F. Qiang, W. Xiankui, X. Meimei, L. Chenghui, G. Wei, L. Wenxia, F. Yongsheng, “Research and Simulation Analysis on Transient Stability of Wind Power Accessing in Regional Grid,” in Proc. of 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC), Xi'an, pp. 389-393, 2018.
[5] L. Binbin, T. Yu, C. Dengfeng, K. Yanguo, D. Jinjin, Z. Hengyang, Y. Wei, Z. Shenglong, “Study on the stability of large wind power grid-connected system including different types of wind generators,” in Proc. of 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, pp. 1-6, 2017.
[6] M. Ma, Y. H. Liu, D. M. Zhao, “Research on the impact of large-scale integrated wind farms on the security and stability of regional power system,” in Proc. of 2010 International Conference on Power System Technology, Hangzhou, pp. 1-6, 2010.
[7] L Zhongyi, L. Chongru, D. Yi, L. Gengyin, “Transient stability studies of power system with shared transmission of wind power and thermal power,” in Proc. of 2nd IET Renewable Power Generation Conference (RPG 2013), Beijing, pp.1-4, 2013.
[8] B. Xiaoyan, L. Guangyue, K. C. Wong, “Impact of wind farm cluster with DFIG on Power System Transient stability,” in IEEE PES Innovative Smart Grid Technologies, Gothenberg, pp. 1-3, 2012.
[9] H. Pingping, D. Ming, L. Binbin, “Study on transient stability of grid-connected large scale wind power system,” in Proc. of The 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, pp.621-625, 2010.
[10] W. Li, V. Quang-Son, H. Min-Han, K. Shun-Chin, K. Bing-Lin, L. Xiu-Yu, A. V. Prokhorov, “Transient stability analysis of Taiwan Power System's power grid connected with a high-capacity offshore wind farm,” in Proc. of 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, pp. 585-590, 2017.
[11] H. Weihao,S. Chi, F. Jiakun, C. Zhe, H. Yanting, “Ancillary frequency control of direct drive full-scale converter based wind power plants,” in Proc. of 2013 IEEE Grenoble Conference, Grenoble, pp.1-6, 2013.
[12] International, Siemens Power Technology, PSS/E Program Operation Manual, Version 33, 2013.
[13] 傅至勤,發電廠緊急柴油發電機暫態穩定度分析,國立臺灣海洋大學碩士學位論文,2010年。
[14] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, “Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions,” IEEE Transactions on Power Systems, Vol.19, No.2 pp.1387-1401, 2002.
[15] T. Van Cutsem, “Voltage instability: phenomena, countermeasures, and analysis methods,” in Proc. of Proceedings of the IEEE, Vol.88, No.2, pp.208-227, Feb. 2000.
[16] T. Van Cutsem, C. Vournas, Voltage Stability of Electric Power System, Kluwer Academic Pubishers, 1998.
[17] 陳壽孫、羅靜儀、石金福、楊金石、蒲冠志,新版電力系統分析-輸配電學,新文京開發出版股份有限公司,頁316-369,2004年。
[18] 詹昀陞,不同型態風機於電力系統之動態分析,國立臺灣海洋大學碩士學位論文,2014年。
[19] P. Kundur, Balu, J. Neal, Lauby, G. Mark, Power System Stability and Control, in Proc. of McGraw-Hill Professional Pub, 1994.
[20] 華健、吳怡萱,再生能源概論,五南圖書出版社,2013年。
[21] 經濟部能源局,風力發電離岸系統示範獎勵辦法,2013年。
[22] 約翰‧泰維德爾,葛塔諾‧高迪,離岸風力發電Offshore Wind Power,世茂出版,2014年。
[23] 吳東昇,風力發電機之低電壓忍受能力分析比較,國立中山大學碩士學位論文,2013年。
[24] M. Behnke, A. Ellis, Y. Kazachkov, T. McCoy, E. Muljadi, W. Price, and J. Sanchez-Gasca, “Development and validation of WECC variable speed wind turbine dynamic models for grid integration studies,” in Proc. of the AWEA’s 2007 Wind Power Conference, Pittsburgh, pp. 1-5, 2007.
[25] 游振和、洪寶亮、蘇育辰、簡弘奇,“風力發電的種類及控制模式概述”,台電工程月刊,第705期,頁29-40,2007年。
[26] T. Lund, P. Sorensen, and L. Eek, “Reactive power capability of a wind turbine with doubly fed induction generator,” Wind Energy, Vol. 10, No. 4, pp. 379-394, 2007.
[27] V. Akhmatov, “Analysis of Dynamic Behavior of Electric Power Systems with Large Amount of Wind Power”, Ph. D. Thesis, Technical University of Denmark, 2003.
[28] A. D. Hansen and L. H. Hansen, “Wind turbine concept market penetration over 10 years (1995-2004),” Wind Energy, Vol. 10, No. 1, pp. 81-97, 2007.
[29] F. John, Walker, J. Nicholas, Wind Energy Technology, WILEY, 1997.
[30] O. Anaya, J. Nick, E. Janaka, Wind Energy Generation Modelling and Control, WILEY, 2009.
[31] A. Thomas, Wind Power in Power System, WILEY, 2004.
[32] 李輝、薛玉石、韓力,“併網風力發電機系統的發展綜述”,微特電機,第5期,頁55-61,2009年。
[33] H. Polinder, F. F. A. van der Pijl, G. J. de Vilder, and P. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines", IEEE Trans. on Energy Conversion, Vol. 21, No. 3, pp.725-733, 2006.
[34] 行政院國家科學委員會專題研究計畫,”高占比風力發電之相關研究--子計畫五:風能高佔比電力”,2001年。
[35] 台灣電力股份有限公司,台灣電力股份有限公司再生能源發電系統併聯技術要點,2018年
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊